Filamentary Ion Flow – Theory and Experiments
Theory and Experiments
Samenvatting
Drifting Ion Theory examines the interdisciplinary theoretical arguments for creating a model of computational electrostatics involved with flowing space charges. It considers laboratory experiments pertaining to the physical performance of unipolar corona ion flows and conventional electrostatic applications.
Specificaties
Inhoudsopgave
<p>ACKNOWLEDGMENTS xv</p>
<p>INTRODUCTION xvii</p>
<p>PRINCIPAL SYMBOLS xxv</p>
<p>1 FUNDAMENTALS OF ELECTRICAL DISCHARGES 1</p>
<p>1.1 Introduction 1</p>
<p>1.2 Ionization Processes in Gases 1</p>
<p>1.2.1 Ionization by Electron Impact 2</p>
<p>1.2.2 Townsend First Ionization Coefficient 3</p>
<p>1.2.3 Electron Avalanches 5</p>
<p>1.2.4 Photoionization 6</p>
<p>1.2.5 Other Ionization Processes 6</p>
<p>1.3 Deionization Processes in Gases 7</p>
<p>1.3.1 Deionization by Recombination 7</p>
<p>1.3.2 Deionization by Attachment 7</p>
<p>1.4 Ionization and Attachment Coefficients 9</p>
<p>1.5 Electrical Breakdown of Gases 10</p>
<p>1.5.1 Breakdown in Steady Uniform Field: Townsend′s Breakdown Mechanism 11</p>
<p>1.5.2 Paschen′s Law 12</p>
<p>1.6 Streamer Mechanism 13</p>
<p>1.7 Breakdown in Nonuniform DC Field 14</p>
<p>1.8 Other Streamer Criteria 16</p>
<p>1.9 Corona Discharge in Air 17</p>
<p>1.9.1 DC Corona Modes 17</p>
<p>1.9.2 Negative Corona Modes 18</p>
<p>1.9.3 Positive Corona Modes 20</p>
<p>1.10 AC Corona 22</p>
<p>1.11 Kaptzov′s Hypothesis 23</p>
<p>2 ION–FLOW MODELS: A REVIEW 25</p>
<p>2.1 Introduction 25</p>
<p>2.2 The Unipolar Space–Charge Flow Problem 26</p>
<p>2.2.1 General Formulation 26</p>
<p>2.2.2 Iterative Procedure 29</p>
<p>2.2.3 The Unipolar Charge–Drift Formula 29</p>
<p>2.3 Deutsch′s Hypotheses (DH) 30</p>
<p>2.4 Some Unipolar Ion–Flow Field Problems 31</p>
<p>2.4.1 Analytical Methods 33</p>
<p>2.4.2 Numerical Methods 40</p>
<p>2.5 Special Models 51</p>
<p>2.5.1 Drift of Charged Spherical Clouds 51</p>
<p>2.5.2 Graphical Approach 53</p>
<p>2.6 More on DH and Concluding Remarks 58</p>
<p>3 INTRODUCTORY SURVEY ON FLUID DYNAMICS 63</p>
<p>3.1 Introduction 63</p>
<p>3.2 Continuum Motion of a Fluid 64</p>
<p>3.3 Fluid Particle 65</p>
<p>3.4 Field Quantities 66</p>
<p>3.5 Conservation Laws in Differential Form 67</p>
<p>3.5.1 Generalization 67</p>
<p>3.5.2 Mass Conservation 68</p>
<p>3.5.3 Momentum Conservation 69</p>
<p>3.5.4 Total Kinetic Energy Conservation 70</p>
<p>3.6 Stokesian and Newtonian Fluids 71</p>
<p>3.7 The Navier Stokes Equation 72</p>
<p>3.8 Deterministic Formulation for et 73</p>
<p>3.9 Incompressible (Isochoric) Flow 73</p>
<p>3.9.1 Mass Conservation 73</p>
<p>3.9.2 Subsonic Flow 74</p>
<p>3.9.3 Momentum Conservation 74</p>
<p>3.9.4 Total Kinetic Energy Conservation 75</p>
<p>3.10 Incompressible and Irrotational Flows 75</p>
<p>3.11 Describing the Velocity Field 76</p>
<p>3.11.1 Decomposition 76</p>
<p>3.11.2 The v–Field of Incompressible and Irrotational Flows 76</p>
<p>3.11.3 Some Practical Remarks and Anticipations 77</p>
<p>3.12 Variational Interpretation in Short 78</p>
<p>3.12.1 Bernoulli′s Equation for Incompressible and Irrotational Flows 78</p>
<p>3.12.2 Lagrange′s Function 80</p>
<p>4 ELECTROHYDRODYNAMICS OF UNIPOLAR ION FLOWS 87</p>
<p>4.1 Introduction 87</p>
<p>4.2 Reduced Mass–Charge 88</p>
<p>4.3 Unified Governing Laws 90</p>
<p>4.3.1 Mass–Charge Conservation Law 90</p>
<p>4.3.2 Fluid Reaction to Excitation Electromagnetic Fields 92</p>
<p>4.3.3 Invalid Application of Gauss′s Law: A Pertaining Example 93</p>
<p>4.3.4 Laplacian Field and Boundary Conditions 95</p>
<p>4.3.5 Vanishing Body Force of Electrical Nature 96</p>
<p>4.3.6 Unified Momentum and Energy Conservation Law 97</p>
<p>4.3.7 Mobility in the Context of a Coupled Model 98</p>
<p>4.3.8 Some Remarks on the Deutsch Hypothesis (DH) 100</p>
<p>4.4 Discontinuous Ion–Flow Parameters 103</p>
<p>4.4.1 Multichanneled Structure 103</p>
<p>4.4.2 Current Distribution 104</p>
<p>4.4.3 More on the Average Quantities 108</p>
<p>4.5 Departures from Previous Theories 109</p>
<p>4.5.1 Ion–Drift Formulation 110</p>
<p>4.5.2 Comparative Discussion 112</p>
<p>4.5.3 Ionic Wind in the Drift Zone 117</p>
<p>4.6 Concluding Remarks on the Laplacian Structure of Ion Flows 120</p>
<p>5 EXPERIMENTAL INVESTIGATION ON UNIPOLAR ION FLOWS 131</p>
<p>5.1 Introduction 131</p>
<p>5.2 V–Shaped Wire Above Plane 136</p>
<p>5.2.1 Main Observables 144</p>
<p>5.3 Two–Wire Bundle 146</p>
<p>5.3.1 Main Observables 154</p>
<p>5.4 Inclined Rod 156</p>
<p>5.4.1 Main Observables 159</p>
<p>5.5 Partially Covered Wire 162</p>
<p>5.5.1 Main Observables 167</p>
<p>5.6 Pointed–Pole Sphere 168</p>
<p>5.6.1 Main Observables 170</p>
<p>5.7 Straight Wedge 170</p>
<p>5.7.1 Main Observables 174</p>
<p>5.8 Discussion 175</p>
<p>5.8.1 Supplementary Theoretical Analysis 175</p>
<p>5.9 Generalization According to Invariance Principles 179</p>
<p>REFERENCES 185</p>
<p>INDEX 193</p>