,

Reduction Theory and Arithmetic Groups

Specificaties
Gebonden, 374 blz. | Engels
Cambridge University Press | e druk, 2022
ISBN13: 9781108832038
Rubricering
Cambridge University Press e druk, 2022 9781108832038
Onderdeel van serie New Mathematical Mon
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Arithmetic groups are generalisations, to the setting of algebraic groups over a global field, of the subgroups of finite index in the general linear group with entries in the ring of integers of an algebraic number field. They are rich, diverse structures and they arise in many areas of study. This text enables you to build a solid, rigorous foundation in the subject. It first develops essential geometric and number theoretical components to the investigations of arithmetic groups, and then examines a number of different themes, including reduction theory, (semi)-stable lattices, arithmetic groups in forms of the special linear group, unipotent groups and tori, and reduction theory for adelic coset spaces. Also included is a thorough treatment of the construction of geometric cycles in arithmetically defined locally symmetric spaces, and some associated cohomological questions. Written by a renowned expert, this book is a valuable reference for researchers and graduate students.

Specificaties

ISBN13:9781108832038
Taal:Engels
Bindwijze:Gebonden
Aantal pagina's:374

Inhoudsopgave

Part I. Arithmetic Groups in the General Linear Group: 1. Modules, lattices, and orders; 2. The general linear group over rings; 3. A menagerie of examples – a historical perspective; 4. Arithmetic groups; 5. Arithmetically defined Kleinian groups and hyperbolic 3-space; Part II. Arithmetic Groups Over Global Fields: 6. Lattices – Reduction theory for GLn; 7. Reduction theory and (semi)-stable lattices; 8. Arithmetic groups in algebraic k-groups; 9. Arithmetic groups, ambient Lie groups, and related geometric objects; 10. Geometric cycles; 11. Geometric cycles via rational automorphisms; 12. Reduction theory for adelic coset spaces; Appendices: A. Linear algebraic groups – a review; B. Global fields; C. Topological groups, homogeneous spaces, and proper actions; References; Index.

Rubrieken

    Personen

      Trefwoorden

        Reduction Theory and Arithmetic Groups