,

A Course in Mathematical Analysis: Volume 3, Complex Analysis, Measure and Integration

Specificaties
Paperback, 329 blz. | Engels
Cambridge University Press | e druk, 2014
ISBN13: 9781107663305
Rubricering
Cambridge University Press e druk, 2014 9781107663305
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in the first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. Volume 1 focuses on the analysis of real-valued functions of a real variable. Volume 2 goes on to consider metric and topological spaces. This third volume develops the classical theory of functions of a complex variable. It carefully establishes the properties of the complex plane, including a proof of the Jordan curve theorem. Lebesgue measure is introduced, and is used as a model for other measure spaces, where the theory of integration is developed. The Radon–Nikodym theorem is proved, and the differentiation of measures discussed.

Specificaties

ISBN13:9781107663305
Taal:Engels
Bindwijze:Paperback
Aantal pagina's:329

Inhoudsopgave

Introduction; Part I. Complex Analysis: 1. Holomorphic functions and analytic functions; 2. The topology of the complex plane; 3. Complex integration; 4. Zeros and singularities; 5. The calculus of residues; 6. Conformal transformations; 7. Applications; Part II. Measure and Integration: 8. Lebesgue measure on R; 9. Measurable spaces and measurable functions; 10. Integration; 11. Constructing measures; 12. Signed measures and complex measures; 13. Measures on metric spaces; 14. Differentiation; 15. Applications; Index.

Rubrieken

    Personen

      Trefwoorden

        A Course in Mathematical Analysis: Volume 3, Complex Analysis, Measure and Integration