

Zhilin Li is a tenured full professor at the Center for Scientific Computation and the Department of Mathematics, North Carolina State University.
Meer over de auteursNumerical Solution of Differential Equations
Introduction to Finite Difference and Finite Element Methods
Samenvatting
This introduction to finite difference and finite element methods is aimed at graduate students who need to solve differential equations. The prerequisites are few (basic calculus, linear algebra, and ODEs) and so the book will be accessible and useful to readers from a range of disciplines across science and engineering.
Part I begins with finite difference methods. Finite element methods are then introduced in Part II. In each part, the authors begin with a comprehensive discussion of one-dimensional problems, before proceeding to consider two or higher dimensions. An emphasis is placed on numerical algorithms, related mathematical theory, and essential details in the implementation, while some useful packages are also introduced. The authors also provide well-tested MATLAB® codes, all available online.
- Offers a concise and practical introduction to finite difference and finite element methods
- Well-tested MATLAB® codes are free to download
- Teaches students how to use computers to solve linear ODEs and PDEs in one and two dimensions
Trefwoorden
numerieke methoden differentiaalvergelijkingen eindige-differentiemethoden eindige-elementenmethoden partiële differentiaalvergelijkingen matlab elliptische pdes parabolische pdes programmeren hyperbolische pdes randvoorwaardeproblemen natuurkunde wiskundige algoritmen beginwaardeproblemen computational science eendimensionale problemen lineaire algebra tweedimensionale problemen wiskundige modellering technische wiskunde discretisatie onderzoek numerieke analyse ingenieurswetenschap stromingsleer stabiliteit convergentie computationele wiskunde mesh-generatie variationele formulering
Trefwoorden
Specificaties
Over Zhonghua Qiao
Over Tao Tang
Inhoudsopgave
U kunt van deze inhoudsopgave een PDF downloaden
Part I. Finite Difference Methods:
2. Finite difference methods for 1D boundary value problems
3. Finite difference methods for 2D elliptic PDEs
4. FD methods for parabolic PDEs
5. Finite difference methods for hyperbolic PDEs
Part II. Finite Element Methods:
6. Finite element methods for 1D boundary value problems
7. Theoretical foundations of the finite element method
8. Issues of the FE method in one space dimension
9. The finite element method for 2D elliptic PDEs
Appendix. Numerical solutions of initial value problems
References
Index.