Epistasis

Methods and Protocols

Specificaties
Paperback, blz. | Engels
Springer US | e druk, 2022
ISBN13: 9781071609491
Rubricering
Springer US e druk, 2022 9781071609491
Onderdeel van serie Methods in Molecular Biology
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This volume explores methods and protocols for detecting epistasis from genetic data. Chapters provide methods and protocols demonstrating approaches to identify epistasis, genetic epistasis testing, genome-wide epistatic SNP networks, epistasis detection through machine learning, and complex interaction analysis using trigenic synthetic genetic array (τ-SGA). Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls.

 

Authoritative and cutting-edge, Epistasis: Methods and Protocols aims to ensure successful results in the further study of this vital field.

 "Simulating Evolution in Asexual Populations with Epistasis” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Specificaties

ISBN13:9781071609491
Taal:Engels
Bindwijze:paperback
Uitgever:Springer US

Inhoudsopgave

<p>Mass-based Protein Phylogenetic Approach to Identify Epistasis.-&nbsp;SNPInt-GPU: Tool for epistasis testing with multiple methods and GPU acceleration.-&nbsp;Epistasis-based Feature Selection Algorithm.-&nbsp;W-test for Genetic Epistasis Testing.-&nbsp;The Combined Analysis of Pleiotropy and Epistasis (CAPE).-&nbsp;Two-Stage Testing for Epistasis: Screening and Veri_cation.-&nbsp;Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies.-&nbsp;Phenotype Prediction under Epistasis.-&nbsp;Simulating Evolution in Asexual Populations with Epistasis.-&nbsp;Protocol for Construction of Genome-Wide Epistatic SNP Networks using WISH-R Package.-&nbsp;Brief survey on Machine Learning in Epistasis.-&nbsp;First-Order Correction of Statistical Significance&nbsp;for Screening Two-Way Epistatic Interactions.-&nbsp;Gene-Environment Interaction:&nbsp; AVariable Selection Perspective.-&nbsp;Using C-JAMP to Investigate Epistasis and Pleiotropy.-&nbsp;Identifying the Significant Change of Gene Expression in Genomic Series Data.-&nbsp;Analyzing High-Order Epistasis from Genotype-phenotype Maps Using ’Epistasis’ Package.-&nbsp;Deep Neural Networks for Epistatic Sequences Analysis.-&nbsp;Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.-&nbsp;A Belief Degree Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.-&nbsp;Epistasis Detection Based on Epi-GTBN.-&nbsp;Epistasis Analysis: Classification through Machine Learning Methods.-&nbsp;Genetic Interaction Network Interpretation: A Tidy Data Science Perspective.-&nbsp;Trigenic Synthetic Genetic Array (τ-SGA) Technique for Complex Interaction Analysis.</p>

<p><br></p>

Rubrieken

    Personen

      Trefwoorden

        Epistasis