Biostatistics for Oral Healthcare
Samenvatting
Biostatistics for Oral Healthcare offers students, practitioners and instructors alike a comprehensive guide to mastering biostatistics and their application to oral healthcare. Drawing on situations and methods from dentistry and oral healthcare, this book provides a thorough treatment of statistical concepts in order to promote in–depth and correct comprehension, supported throughout by technical discussion and a multitude of practical examples.
Specificaties
Inhoudsopgave
<p>1. What Is Biostatistics?.</p>
<p>2. Why Do I Need Statistics?.</p>
<p>3. How Much Mathematics Do I Need?.</p>
<p>4. How to Study Statistics?.</p>
<p>5. Reference.</p>
<p>Chapter 2. Summarizing Data.</p>
<p>1. Raw Data and Basic Terminology.</p>
<p>2. The Levels of Measurements.</p>
<p>3. Frequency Distributions.</p>
<p>Frequency Tables.</p>
<p>Relative Frequency.</p>
<p>4. Graphs.</p>
<p>Bar Graphs.</p>
<p>Pie Charts.</p>
<p>Line Graphs.</p>
<p>Histograms.</p>
<p>Stem and Leaf Plots.</p>
<p>5. Clinical Trials.</p>
<p>6. Confounding Variables.</p>
<p>7. Exercises.</p>
<p>8. References.</p>
<p>Chapter 3. Measures of Central Tendency, Dispersion, and Skewness.</p>
<p>1. Introduction.</p>
<p>2. Mean.</p>
<p>3. Weighted Mean.</p>
<p>4. Median.</p>
<p>5. Mode.</p>
<p>6. Geometric Mean.</p>
<p>7. Harmonic Mean.</p>
<p>8. Mean and Median of Grouped Data.</p>
<p>9. Mean of Two or More Means.</p>
<p>10. Range.</p>
<p>11. Percentiles and Interquartile Range.</p>
<p>12. Box–whisker Plot.</p>
<p>13. Variance and Standard Deviation.</p>
<p>14. Coefficient of Variation.</p>
<p>15. Variance of the Grouped Data.</p>
<p>16. Skewness.</p>
<p>17. Exercises.</p>
<p>18. References.</p>
<p>Chapter 4. Probability.</p>
<p>1. Introduction.</p>
<p>2. Sample Space and Events.</p>
<p>3. Basic Properties of Probability.</p>
<p>4. Independence and Mutually Exclusive Events.</p>
<p>5. Conditional Probability.</p>
<p>6. Bayes Theorem.</p>
<p>7. Rates and Proportions.</p>
<p>Prevalence and Incidence.</p>
<p>Sensitivity and Specificity.</p>
<p>Relative Risk and Odds Ratio.</p>
<p>8. Exercises.</p>
<p>9. References.</p>
<p>Chapter 5. Probability Distributions.</p>
<p>1. Introduction.</p>
<p>2. Binomial Distribution.</p>
<p>3. Poisson Distribution.</p>
<p>4. Poisson Approximation to Binomial Distribution.</p>
<p>5. Normal Distribution.</p>
<p>Properties of Normal Distributions.</p>
<p>Standard Normal Distribution.</p>
<p>Using Normal Probability Table.</p>
<p>Further Applications of Normal Probability.</p>
<p>Normal Approximation to the Binomial Distribution.</p>
<p>6. Exercises.</p>
<p>7. References.</p>
<p>Chapter 6. Sampling Distributions.</p>
<p>1. Introduction.</p>
<p>2. Sampling Distribution of the Mean.</p>
<p>Standard Error of the Sample Mean.</p>
<p>Central Limit Theorem.</p>
<p>3. Student′s t Distribution.</p>
<p>4. Exercises.</p>
<p>5. References.</p>
<p>Chapter 7. Confidence Intervals and Sample Size.</p>
<p>1. Introduction.</p>
<p>2. Confidence Intervals for the Mean and Sample Size n when Is Known.</p>
<p>3. Confidence Intervals for the Mean when is Not Known.</p>
<p>4. Confidence Intervals for the Binomial Parameter p.</p>
<p>5. Confidence Intervals for the Variances and Standard Deviations.</p>
<p>6. Exercises.</p>
<p>7. References.</p>
<p>Chapter 8. Hypothesis Testing: One Sample Case.</p>
<p>1. Introduction.</p>
<p>2. Concept of Hypothesis Testing.</p>
<p>3. One–tailed Z Test of the Mean of a Normal Distribution When Is Known.</p>
<p>4. Two–tailed Z Test of the Mean of a Normal Distribution When Is Known.</p>
<p>5. t Test of the Mean of a Normal Distribution.</p>
<p>6. The Power of a Test and Sample Size.</p>
<p>7. One–Sample Test for a Binomial Proportion.</p>
<p>8. One–Sample Test for the Variance of a Normal Distribution.</p>
<p>9. Exercises.</p>
<p>10. References.</p>
<p>Chapter 9. Hypothesis Testing: Two–Sample Case.</p>
<p>1. Introduction.</p>
<p>2. Two Sample Z Test for Comparing Two Means.</p>
<p>3. Two Sample t Test for Comparing Two Means with Equal Variances.</p>
<p>4. Two Sample t Test for Comparing Two Means with Unequal Variances.</p>
<p>5. The Paired t Test.</p>
<p>6. Z Test for Comparing Two Binomial Proportions.</p>
<p>7. The Sample Size and Power of a Two Sample Test.</p>
<p>Estimation of a Sample Size.</p>
<p>The Power of a Two Sample Test.</p>
<p>8. The F Test for the Equality of Two Variances.</p>
<p>9. Exercises.</p>
<p>10. References.</p>
<p>Chapter 10. Categorical Data Analysis.</p>
<p>1. Introduction.</p>
<p>2. 2 x 2 Contingency Table.</p>
<p>3. r x c Contingency Table.</p>
<p>4. The Cochran–Mantel–Haenszel Test.</p>
<p>5. The McNemar Test.</p>
<p>6. The Kappa Statistic.</p>
<p>7. Goodness of Fit Test.</p>
<p>8. Exercises.</p>
<p>9. References.</p>
<p>Chapter 11. Regression Analysis and Correlation.</p>
<p>1. Introduction.</p>
<p>2. Simple Linear Regression.</p>
<p>Description of Regression Model.</p>
<p>Estimation of Regression Function.</p>
<p>Aptness of a Model.</p>
<p>3. Correlation Coefficient.</p>
<p>Significance of Correlation Coefficient.</p>
<p>4. Coefficient of Determination.</p>
<p>5. Multiple Regression.</p>
<p>6. Logistic Regression.</p>
<p>The Logistic Regression Model.</p>
<p>Fitting the Logistic Regression Model.</p>
<p>7. Multiple Logistic Regression Model.</p>
<p>8. Exercises.</p>
<p>9. References.</p>
<p>Chapter 12. One–Way Analysis of Variance.</p>
<p>1. Introduction.</p>
<p>2. Factors and Factor Levels.</p>
<p>3. Statement of the Problem and Model Assumptions.</p>
<p>4. Basic Concepts in ANOVA.</p>
<p>5. F–test for Comparison of k Population Means.</p>
<p>6. Multiple Comparisons Procedures.</p>
<p>Least Significant Difference Method.</p>
<p>Bonferroni Approach.</p>
<p>Scheffe′s Method.</p>
<p>Tukey′s Procedure.</p>
<p>7. One–way ANOVA Random Effects Model.</p>
<p>8. Test for Equality of k Variances.</p>
<p>Bartlett′s Test.</p>
<p>Hartley′s Test.</p>
<p>9. Exercises.</p>
<p>10. References.</p>
<p>Chapter 13. Two–Way Analysis of Variance.</p>
<p>1. Introduction.</p>
<p>2. General Model.</p>
<p>3. Sum of Squares and Degrees of Freedom.</p>
<p>4. F Test.</p>
<p>5. Exercises.</p>
<p>6. References.</p>
<p>Chapter 14. Non–Parametric Statistics.</p>
<p>1. Introduction.</p>
<p>2. The Sign Test.</p>
<p>3. The Wilcoxon Rank Sum Test.</p>
<p>4. The Wilcoxon Signed Rank Test.</p>
<p>5. The Median Test.</p>
<p>6. The Kruskal–Wallis Test.</p>
<p>7. The Friedman Test.</p>
<p>8. The Permutation Test.</p>
<p>9. The Cochran Test.</p>
<p>10. The Squared Rank Test For Variances.</p>
<p>11. Spearman′s Rank Correlation Coefficient.</p>
<p>12. Exercises.</p>
<p>13. References.</p>
<p>Chapter 15. Survival Analysis.</p>
<p>1. Introduction.</p>
<p>2. Person–Time Method and Mortality Rate.</p>
<p>3. Life Table Analysis.</p>
<p>4. Hazard Function.</p>
<p>5. Kaplan–Meier Product Limit Estimator.</p>
<p>6. Comparing Survival Functions.</p>
<p>Gehan′s Generalized Wilcoxon Test.</p>
<p>The Logrank Test.</p>
<p>The Mantel and Haenszel Test.</p>
<p>7. Piecewise Exponential Estimator (PEXE).</p>
<p>Small Sample Illustration.</p>
<p>General Description of PEXE.</p>
<p>An Example.</p>
<p>Properties of PEXE and Comparisons with Kaplan–Meier Estimator.</p>
<p>8. References.</p>
<p>Appendix.</p>
<p>Solutions to Selected Exercises.</p>
<p>Table A. Table of Random Numbers.</p>
<p>Table B. Table of Binomial Probabilities.</p>
<p>Table C. Table of Poisson Probabilities.</p>
<p>Table D. Standard Normal Probabilities.</p>
<p>Table E. Percentiles of the t Distribution.</p>
<p>Table F. Percentiles of the Distribution.</p>
<p>Table G. Percentiles of the F Distribution</p>

