Cellular Biophysics and Modeling

A Primer on the Computational Biology of Excitable Cells

Specificaties
Paperback, 394 blz. | Engels
Cambridge University Press | e druk, 2019
ISBN13: 9780521183055
Rubricering
Hoofdrubriek : Wetenschap en techniek
Cambridge University Press e druk, 2019 9780521183055
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

What every neuroscientist should know about the mathematical modeling of excitable cells. Combining empirical physiology and nonlinear dynamics, this text provides an introduction to the simulation and modeling of dynamic phenomena in cell biology and neuroscience. It introduces mathematical modeling techniques alongside cellular electrophysiology. Topics include membrane transport and diffusion, the biophysics of excitable membranes, the gating of voltage and ligand-gated ion channels, intracellular calcium signalling, and electrical bursting in neurons and other excitable cell types. It introduces mathematical modeling techniques such as ordinary differential equations, phase plane, and bifurcation analysis of single-compartment neuron models. With analytical and computational problem sets, this book is suitable for life sciences majors, in biology to neuroscience, with one year of calculus, as well as graduate students looking for a primer on membrane excitability and calcium signalling.

Specificaties

ISBN13:9780521183055
Taal:Engels
Bindwijze:paperback
Aantal pagina's:394
Verschijningsdatum:14-3-2019

Inhoudsopgave

1. Introduction; Part I. Models and Odes: 2. Compartmental modeling; 3. Phase diagrams; 4. Ligands, receptors and rate laws; 5. Function families and characteristic times; 6. Bifurcation diagrams of scalar ODEs; Part II. Passive Membranes: 7. The Nernst equilibrium potential; 8. The current balance equation; 9. GHK theory of membrane permeation; Part III. Voltage-Gated Currents: 10. Voltage-gated ionic currents; 11. Regenerative ionic currents and bistability; 12. Voltage-clamp recording; 13. Hodgkin-Huxley model of the action potential; Part IV. Excitability and Phase Planes: 14. The Morris-Lecar model; 15. Phase plane analysis; 16. Linear stability analysis; Part V. Oscillations and Bursting: 17. Type II excitability and oscillations; 18. Type I excitability and oscillations; 19. The low-threshold calcium spike; 20. Synaptic currents.

Rubrieken

    Personen

      Trefwoorden

        Cellular Biophysics and Modeling