Long–Wavelength Infrared Semiconductor Lasers

Specificaties
Gebonden, 420 blz. | Engels
John Wiley & Sons | e druk, 2004
ISBN13: 9780471392002
Rubricering
John Wiley & Sons e druk, 2004 9780471392002
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Long–wavelength Infrared Semiconductor Lasers provides a comprehensive review of the current status of semiconductor coherent sources emitting in the mid–to far–infrared spectrum and their applications. It includes three topics not covered in any previous book: far–infrared emission from photo–mixers as well as from hot–hole lasers, and InP–based lasers emitting beyond two micrometers. Semiconductor lasers emitting at more than two micrometers have many applications such as in trace gas analysis, environmental monitoring, and industrial process control. Because of very rapid progress in recent years, until this book no comprehensive information beyond scattered journal articles is available at present.

Specificaties

ISBN13:9780471392002
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:420

Inhoudsopgave

Preface.
<p>Acknowledgments.</p>
<p>Contributors.</p>
<p>1. Coherent Sources in the Long–Wavelength Infrared Spectrum (Hong K. Choi).</p>
<p>1.1 Introduction.</p>
<p>1.2 Synopsis of Long–Wavelength Coherent Sources.</p>
<p>1.3 Scope of Book.</p>
<p>2. 2–&micro;m Wavelength Lasers Employing InP–based Strained–Layer Quantum Wells (Manabu Mitsuhara and Mamoru Oishi).</p>
<p>2.1 Introduction.</p>
<p>2.2 Material Properties of InGaAsP.</p>
<p>2.3 Design Consideration of MQW Active Region.</p>
<p>2.4 Growth and Characterization of Strained–InGaAs Quantum Wells.</p>
<p>2.5 Lasing Characteristics of 2–&micro;m wavelength InGaAs–MQW Lasers.</p>
<p>2.6 Conclusions and Future Prospects.</p>
<p>3. Antimonide Mid–IR Lasers (L.J. Olafsen, et al.).</p>
<p>3.1 Introduction.</p>
<p>3.2 Antimonide III–V Material System.</p>
<p>3.3 Antimonide Lasers Emitting in the 2&micro;m &lt; &lt; 3&micro;m Range.</p>
<p>3.4 Antimonide Lasers Emitting in the 3&micro;m Range.</p>
<p>3.5 Challenges and Issues.</p>
<p>3.6 Conclusions.</p>
<p>4. Lead–Chalcogenide–based Mid–Infrared Diode Lasers (Uwe Peter Schie&aacute;l, et al.).</p>
<p>4.1 Introduction.</p>
<p>4.2 Homostructure Lasers.</p>
<p>4.3 Double–Heterostructure Lasers.</p>
<p>4.4 Quantum–Well Lasers.</p>
<p>4.5 DFB and DBR Lasers.</p>
<p>4.6 IV–VI Epitaxy on BaF2 and Silicon.</p>
<p>4.7 Conclusion.</p>
<p>5. InP and GaAs–Based Quantum Cascade Lasers (J&eacute;r&ocirc;me Faist and Carco Sirtori).</p>
<p>5.1 Introduction.</p>
<p>5.2 Quantum Cascade Laser Fundamentals.</p>
<p>5.3 Fundamentals of the Three–Quantum–Well Active–Region Device.</p>
<p>5.4 Waveguide and Technology.</p>
<p>5.5 High–Power, Room–Temperature Operation of Three–Quantum–Well Active Region Designs.</p>
<p>5.6 GaAs–Based QC Lasers.</p>
<p>5.7 Role of the Conduction–Band Discontinuity.</p>
<p>5.8 Spectral Characteristics of QC Lasers.</p>
<p>5.9 Distributed Feedback Quantum Cascade Lasers.</p>
<p>5.10 Microsctructured QC Lasers.</p>
<p>5.11 Outlook on Active Region Designs and Conclusions.</p>
<p>6. Widely Tunable Far–Infrared Hot–Hole Semiconductor Lasers (Erik Br&uuml;ndermann).</p>
<p>6.1 Introduction.</p>
<p>6.2 Hot–Hole Laser Model.</p>
<p>6.3 Laser Material Fabrication.</p>
<p>6.4 Technology.</p>
<p>6.5 Laser Emission.</p>
<p>6.6 Future Trends.</p>
<p>6.7 Summary.</p>
<p>7. Continous THz generation with Optical Heterodyning (J. C. Pearson, et al.).</p>
<p>7.1 Introduction.</p>
<p>7.2 Requirements for Photomixing Systems.</p>
<p>7.3 Design Trade–offs for Photomixers.</p>
<p>7.4 Antenna Design.</p>
<p>7.5 Applications.</p>
<p>7.6 Summary.</p>
<p>Index.</p>

Rubrieken

    Personen

      Trefwoorden

        Long–Wavelength Infrared Semiconductor Lasers