Handbook of Green Analytical Chemistry

Specificaties
Gebonden, 566 blz. | Engels
John Wiley & Sons | e druk, 2012
ISBN13: 9780470972014
Rubricering
John Wiley & Sons e druk, 2012 9780470972014
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The emerging field of green analytical chemistry is concerned with the development of analytical procedures that minimize consumption of hazardous reagents and solvents, and maximize safety for operators and the environment.  In recent years there have been significant developments in methodological and technological tools to prevent and reduce the deleterious effects of analytical activities; key strategies include recycling, replacement, reduction and detoxification of reagents and solvents.

The Handbook of Green Analytical Chemistry provides a comprehensive overview of the present state and recent developments in green chemical analysis. A series of detailed chapters, written by international specialists in the field, discuss the fundamental principles of green analytical chemistry and present a catalogue of tools for developing environmentally friendly analytical techniques.

Topics covered include:

Concepts: Fundamental principles, education, laboratory experiments and publication in green analytical chemistry.
The Analytical Process: Green sampling techniques and sample preparation, direct analysis of samples, green methods for capillary electrophoresis, chromatography, atomic spectroscopy, solid phase molecular spectroscopy, derivative molecular spectroscopy and electroanalytical methods.
Strategies: Energy saving, automation, miniaturization and photocatalytic treatment of laboratory wastes.
Fields of Application: Green bioanalytical chemistry, biodiagnostics, environmental analysis and industrial analysis.

This advanced handbook is a practical resource for experienced analytical chemists who are interested in implementing green approaches in their work.

 

Specificaties

ISBN13:9780470972014
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:566

Inhoudsopgave

List of Contributors xv
<p>Preface xix</p>
<p>Section I: Concepts 1</p>
<p>1 The Concept of Green Analytical Chemistry 3<br /> Miguel de la Guardia and Salvador Garrigues</p>
<p>1.1 Green Analytical Chemistry in the frame of Green Chemistry 3</p>
<p>1.2 Green Analytical Chemistry versus Analytical Chemistry 7</p>
<p>1.3 The ethical compromise of sustainability 9</p>
<p>1.4 The business opportunities of clean methods 11</p>
<p>1.5 The attitudes of the scientific community 12</p>
<p>References 14</p>
<p>2 Education in Green Analytical Chemistry 17<br /> Miguel de la Guardia and Salvador Garrigues</p>
<p>2.1 The structure of the Analytical Chemistry paradigm 17</p>
<p>2.2 The social perception of Analytical Chemistry 20</p>
<p>2.3 Teaching Analytical Chemistry 21</p>
<p>2.4 Teaching Green Analytical Chemistry 25</p>
<p>2.5 From the bench to the real world 26</p>
<p>2.6 Making sustainable professionals for the future 28</p>
<p>References 29</p>
<p>3 Green Analytical Laboratory Experiments 31<br /> Suparna Dutta and Arabinda K. Das</p>
<p>3.1 Greening the university laboratories 31</p>
<p>3.2 Green laboratory experiments 33</p>
<p>3.2.1 Green methods for sample pretreatment 33</p>
<p>3.2.2 Green separation using liquid–liquid, solid–phase and solventless extractions 37</p>
<p>3.2.3 Green alternatives for chemical reactions 42</p>
<p>3.2.4 Green spectroscopy 45</p>
<p>3.3 The place of Green Analytical Chemistry in the future of our laboratories 52</p>
<p>References 52</p>
<p>4 Publishing in Green Analytical Chemistry 55<br /> Salvador Garrigues and Miguel de la Guardia</p>
<p>4.1 A bibliometric study of the literature in Green Analytical Chemistry 56</p>
<p>4.2 Milestones of the literature on Green Analytical Chemistry 57</p>
<p>4.3 The need for powerful keywords 61</p>
<p>4.4 A new attitude of authors faced with green parameters 62</p>
<p>4.5 A proposal for editors and reviewers 64</p>
<p>4.6 The future starts now 65</p>
<p>References 66</p>
<p>Section II: The Analytical Process 67</p>
<p>5 Greening Sampling Techniques 69<br /> Jos&eacute; Luis G&oacute;mez Ariza and Tamara Garc&iacute;a Barrera</p>
<p>5.1 Greening analytical chemistry solutions for sampling 70</p>
<p>5.2 New green approaches to reduce problems related to sample losses, sample contamination, transport and storage 70</p>
<p>5.2.1 Methods based on flow–through solid phase spectroscopy 70</p>
<p>5.2.2 Methods based on hollow–fiber GC/HPLC/CE 71</p>
<p>5.2.3 Methods based on the use of nanoparticles 75</p>
<p>5.3 Greening analytical in–line systems 76</p>
<p>5.4 In–field sampling 77</p>
<p>5.5 Environmentally friendly sample stabilization 79</p>
<p>5.6 Sampling for automatization 79</p>
<p>5.7 Future possibilities in green sampling 80</p>
<p>References 80</p>
<p>6 Direct Analysis of Samples 85<br /> Sergio Armenta and Miguel de la Guardia</p>
<p>6.1 Remote environmental sensing 85</p>
<p>6.1.1 Synthetic Aperture Radar (SAR) images (satellite sensors) 86</p>
<p>6.1.2 Open–path spectroscopy 86</p>
<p>6.1.3 Field–portable analyzers 90</p>
<p>6.2 Process monitoring: in–line, on–line and at–line measurements 91</p>
<p>6.2.1 NIR spectroscopy 92</p>
<p>6.2.2 Raman spectroscopy 92</p>
<p>6.2.3 MIR spectroscopy 93</p>
<p>6.2.4 Imaging technology and image analysis 93</p>
<p>6.3 At–line non–destructive or quasi non–destructive measurements 94</p>
<p>6.3.1 Photoacoustic Spectroscopy (PAS) 94</p>
<p>6.3.2 Ambient Mass Spectrometry (MS) 95</p>
<p>6.3.3 Solid sampling plasma sources 95</p>
<p>6.3.4 Nuclear Magnetic Resonance (NMR) 96</p>
<p>6.3.5 X–ray spectroscopy 96</p>
<p>6.3.6 Other surface analysis techniques 97</p>
<p>6.4 New challenges in direct analysis 97</p>
<p>References 98</p>
<p>7 Green Analytical Chemistry Approaches in Sample Preparation 103<br /> Marek Tobiszewski, Agata Mechlinska and Jacek Namiesnik</p>
<p>7.1 About sample preparation 103</p>
<p>7.2 Miniaturized extraction techniques 104</p>
<p>7.2.1 Solid–phase extraction (SPE) 104</p>
<p>7.2.2 Solid–phase microextraction (SPME) 105</p>
<p>7.2.3 Stir–bar sorptive extraction (SBSE) 106</p>
<p>7.2.4 Liquid–liquid microextraction 106</p>
<p>7.2.5 Membrane extraction 108</p>
<p>7.2.6 Gas extraction 109</p>
<p>7.3 Alternative solvents 113</p>
<p>7.3.1 Analytical applications of ionic liquids 113</p>
<p>7.3.2 Supercritical fluid extraction 114</p>
<p>7.3.3 Subcritical water extraction 115</p>
<p>7.3.4 Fluorous phases 116</p>
<p>7.4 Assisted extractions 117</p>
<p>7.4.1 Microwave–assisted extraction 117</p>
<p>7.4.2 Ultrasound–assisted extraction 117</p>
<p>7.4.3 Pressurized liquid extraction 118</p>
<p>7.5 Final remarks 119</p>
<p>References 119</p>
<p>8 Green Sample Preparation with Non–Chromatographic Separation Techniques 125<br /> Mar&iacute;a Dolores Luque de Castro and Miguel Alcaide Molina</p>
<p>8.1 Sample preparation in the frame of the analytical process 125</p>
<p>8.2 Separation techniques involving a gas liquid interface 127</p>
<p>8.2.1 Gas diffusion 127</p>
<p>8.2.2 Pervaporation 127</p>
<p>8.2.3 Membrane extraction with a sorbent interface 130</p>
<p>8.2.4 Distillation and microdistillation 131</p>
<p>8.2.5 Head–space separation 131</p>
<p>8.2.6 Hydride generation and cold–mercury vapour formation 133</p>
<p>8.3 Techniques involving a liquid liquid interface 133</p>
<p>8.3.1 Dialysis and microdialysis 133</p>
<p>8.3.2 Liquid liquid extraction 134</p>
<p>8.3.3 Single–drop microextraction 137</p>
<p>8.4 Techniques involving a liquid solid interface 139</p>
<p>8.4.1 Solid–phase extraction 139</p>
<p>8.4.2 Solid–phase microextraction 141</p>
<p>8.4.3 Stir–bar sorptive extraction 142</p>
<p>8.4.4 Continuous filtration 143</p>
<p>8.5 A Green future for sample preparation 145</p>
<p>References 145</p>
<p>9 Capillary Electrophoresis 153<br /> Mihkel Kaljurand</p>
<p>9.1 The capillary electrophoresis separation techniques 153</p>
<p>9.2 Capillary electrophoresis among other liquid phase separation methods 155</p>
<p>9.2.1 Basic instrumentation for liquid phase separations 155</p>
<p>9.2.2 CE versus HPLC from the point of view of Green Analytical Chemistry 156</p>
<p>9.2.3 CE as a method of choice for portable instruments 159</p>
<p>9.2.4 World–to–chip interfacing and the quest for a killer application for LOC devices 163</p>
<p>9.2.5 Gradient elution moving boundary electrophoresis and electrophoretic exclusion 165</p>
<p>9.3 Possible ways of surmounting the disadvantages of CE 167</p>
<p>9.4 Sample preparation in CE 168</p>
<p>9.5 Is capillary electrophoresis a green alternative? 169</p>
<p>References 170</p>
<p>10 Green Chromatography 175<br /> Chi–Yu Lu</p>
<p>10.1 Greening liquid chromatography 175</p>
<p>10.2 Green solvents 176</p>
<p>10.2.1 Hydrophilic solvents 176</p>
<p>10.2.2 Ionic liquids 177</p>
<p>10.2.3 Supercritical Fluid Chromatography (SFC) 177</p>
<p>10.3 Green instruments 178</p>
<p>10.3.1 Microbore Liquid Chromatography (microbore LC) 179</p>
<p>10.3.2 Capillary Liquid Chromatography (capillary LC) 180</p>
<p>10.3.3 Nano Liquid Chromatography (nano LC) 181</p>
<p>10.3.4 How to transfer the LC condition from traditional LC to microbore LC, capillary LC or nano LC 182</p>
<p>10.3.5 Homemade micro–scale analytical system 183</p>
<p>10.3.6 Ultra Performance Liquid Chromatography (UPLC) 184</p>
<p>References 185</p>
<p>11 Green Analytical Atomic Spectrometry 199<br /> Mart&iacute;n Resano, Esperanza Garc&iacute;a–Ruiz and Miguel A. Belarra</p>
<p>11.1 Atomic spectrometry in the context of Green Analytical Chemistry 199</p>
<p>11.2 Improvements in sample pretreatment strategies 202</p>
<p>11.2.1 Specific improvements 202</p>
<p>11.2.2 Slurry methods 204</p>
<p>11.3 Direct solid sampling techniques 205</p>
<p>11.3.1 Basic operating principles of the techniques discussed 205</p>
<p>11.3.2 Sample requirements and pretreatment strategies 207</p>
<p>11.3.3 Analyte monitoring: The arrival of high–resolution continuum source atomic absorption spectrometry 208</p>
<p>11.3.4 Calibration 210</p>
<p>11.3.5 Selected applications 210</p>
<p>11.4 Future for green analytical atomic spectrometry 213</p>
<p>References 215</p>
<p>12 Solid Phase Molecular Spectroscopy 221<br /> Antonio Molina–D&iacute;az, Juan Francisco Garc&iacute;a–Reyes and Natividad Ramos–Martos</p>
<p>12.1 Solid phase molecular spectroscopy: an approach to Green Analytical Chemistry 221</p>
<p>12.2 Fundamentals of solid phase molecular spectroscopy 222</p>
<p>12.2.1 Solid phase absorption (spectrophotometric) procedures 222</p>
<p>12.2.2 Solid phase emission (fluorescence) procedures 225</p>
<p>12.3 Batch mode procedures 225</p>
<p>12.4 Flow mode procedures 226</p>
<p>12.4.1 Monitoring an intrinsic property 227</p>
<p>12.4.2 Monitoring derivative species 231</p>
<p>12.4.3 Recent flow–SPMS based approaches 232</p>
<p>12.5 Selected examples of application of solid phase molecular spectroscopy 233</p>
<p>12.6 The potential of flow solid phase envisaged from the point of view of Green Analytical Chemistry 235</p>
<p>References 240</p>
<p>13 Derivative Techniques in Molecular Absorption, Fluorimetry and Liquid Chromatography as Tools for Green Analytical Chemistry 245<br /> Jos&eacute; Manuel Cano Pav&oacute;n, Amparo Garc&iacute;a de Torres, Catalina Bosch Ojeda, Fuensanta S&aacute;nchez Rojas and Elisa I. Vereda Alonso</p>
<p>13.1 The derivative technique as a tool for Green Analytical Chemistry 245</p>
<p>13.1.1 Theoretical aspects 246</p>
<p>13.2 Derivative absorption spectrometry in the UV–visible region 247</p>
<p>13.2.1 Strategies to greener derivative spectrophotometry 248</p>
<p>13.3 Derivative fluorescence spectrometry 250</p>
<p>13.3.1 Derivative synchronous fluorescence spectrometry 251</p>
<p>13.4 Use of derivative signal techniques in liquid chromatography 254</p>
<p>References 255</p>
<p>14 Greening Electroanalytical Methods 261<br /> Paloma Y&aacute;&ntilde;ez–Sede&ntilde;o, Jos&eacute; M. Pingarr&oacute;n and Lucas Hern&aacute;ndez</p>
<p>14.1 Towards a more environmentally friendly electroanalysis 261</p>
<p>14.2 Electrode materials 262</p>
<p>14.2.1 Alternatives to mercury electrodes 262</p>
<p>14.2.2 Nanomaterial–based electrodes 268</p>
<p>14.3 Solvents 270</p>
<p>14.3.1 Ionic liquids 271</p>
<p>14.3.2 Supercritical fluids 273</p>
<p>14.4 Electrochemical detection in flowing solutions 274</p>
<p>14.4.1 Injection techniques 274</p>
<p>14.4.2 Miniaturized systems 276</p>
<p>14.5 Biosensors 278</p>
<p>14.5.1 Greening biosurface preparation 278</p>
<p>14.5.2 Direct electrochemical transfer of proteins 281</p>
<p>14.6 Future trends in green electroanalysis 282</p>
<p>References 282</p>
<p>Section III: Strategies 289</p>
<p>15 Energy Savings in Analytical Chemistry 291<br /> Mihkel Koel</p>
<p>15.1 Energy consumption in analytical methods 291</p>
<p>15.2 Economy and saving energy in laboratory practice 294</p>
<p>15.2.1 Good housekeeping, control and maintenance 295</p>
<p>15.3 Alternative sources of energy for processes 296</p>
<p>15.3.1 Using microwaves in place of thermal heating 297</p>
<p>15.3.2 Using ultrasound in sample treatment 299</p>
<p>15.3.3 Light as a source of energy 301</p>
<p>15.4 Using alternative solvents for energy savings 302</p>
<p>15.4.1 Advantages of ionic liquids 303</p>
<p>15.4.2 Using subcritical and supercritical fluids 303</p>
<p>15.5 Efficient laboratory equipment 305</p>
<p>15.5.1 Trends in sample treatment 306</p>
<p>15.6 Effects of automation and micronization on energy consumption 307</p>
<p>15.6.1 Miniaturization in sample treatment 308</p>
<p>15.6.2 Using sensors 310</p>
<p>15.7 Assessment of energy efficiency 312</p>
<p>References 316</p>
<p>16 Green Analytical Chemistry and Flow Injection Methodologies 321<br /> Luis Dante Mart&iacute;nez, Soledad Cerutti and Ra&uacute;l Andr&eacute;s Gil</p>
<p>16.1 Progress of automated techniques for Green Analytical Chemistry 321</p>
<p>16.2 Flow injection analysis 322</p>
<p>16.3 Sequential injection analysis 325</p>
<p>16.4 Lab–on–valve 327</p>
<p>16.5 Multicommutation 328</p>
<p>16.6 Conclusions and remarks 334</p>
<p>References 334</p>
<p>17 Miniaturization 339<br /> Alberto Escarpa, Miguel &Aacute;ngel L&oacute;pez and Lourdes Ramos</p>
<p>17.1 Current needs and pitfalls in sample preparation 340</p>
<p>17.2 Non–integrated approaches for miniaturized sample preparation 341</p>
<p>17.2.1 Gaseous and liquid samples 341</p>
<p>17.2.2 Solid samples 350</p>
<p>17.3 Integrated approaches for sample preparation on microfluidic platforms 353</p>
<p>17.3.1 Microfluidic platforms in sample preparation process 353</p>
<p>17.3.2 The isolation of analyte from the sample matrix: filtering approaches 356</p>
<p>17.3.3 The isolation of analytes from the sample matrix: extraction approaches 360</p>
<p>17.3.4 Preconcentration approaches using electrokinetics 365</p>
<p>17.3.5 Derivatization schemes on microfluidic platforms 372</p>
<p>17.3.6 Sample preparation in cell analysis 373</p>
<p>17.4 Final remarks 378</p>
<p>References 379</p>
<p>18 Micro– and Nanomaterials Based Detection Systems Applied in Lab–on–a–Chip Technology 389<br /> Mariana Medina–S&aacute;nchez and Arben Merko&ccedil;i</p>
<p>18.1 Micro– and nanotechnology in Green Analytical Chemistry 389</p>
<p>18.2 Nanomaterials–based (bio)sensors 390</p>
<p>18.2.1 Optical nano(bio)sensors 391</p>
<p>18.2.2 Electrochemical nano(bio)sensors 393</p>
<p>18.2.3 Other detection principles 395</p>
<p>18.3 Lab–on–a–chip (LOC) technology 396</p>
<p>18.3.1 Miniaturization and nano–/microfluidics 396</p>
<p>18.3.2 Micro– and nanofabrication techniques 397</p>
<p>18.4 LOC applications 398</p>
<p>18.4.1 LOCs with optical detections 398</p>
<p>18.4.2 LOCs with electrochemical detectors 398</p>
<p>18.4.3 LOCs with other detections 399</p>
<p>18.5 Conclusions and future perspectives 400</p>
<p>References 401</p>
<p>19 Photocatalytic Treatment of Laboratory Wastes Containing Hazardous Organic Compounds 407<br /> Edmondo Pramauro, Alessandra Bianco Prevot and Debora Fabbri</p>
<p>19.1 Photocatalysis 407</p>
<p>19.2 Fundamentals of the photocatalytic process 408</p>
<p>19.3 Limits of the photocatalytic treatment 408</p>
<p>19.4 Usual photocatalytic procedure in laboratory practice 408</p>
<p>19.4.1 Solar detoxification of laboratory waste 409</p>
<p>19.5 Influence of experimental parameters 411</p>
<p>19.5.1 Dissolved oxygen 411</p>
<p>19.5.2 pH 411</p>
<p>19.5.3 Catalyst concentration 412</p>
<p>19.5.4 Degradation kinetics 412</p>
<p>19.6 Additives reducing the e /h+ recombination 412</p>
<p>19.7 Analytical control of the photocatalytic treatment 413</p>
<p>19.8 Examples of possible applications of photocatalysis to the treatment of laboratory wastes 413</p>
<p>19.8.1 Percolates containing soluble aromatic contaminants 414</p>
<p>19.8.2 Photocatalytic destruction of aromatic amine residues in aqueous wastes 414</p>
<p>19.8.3 Degradation of aqueous wastes containing pesticides residue 415</p>
<p>19.8.4 The peculiar behaviour of triazine herbicides 416</p>
<p>19.8.5 Treatment of aqueous wastes containing organic solvent residues 416</p>
<p>19.8.6 Treatment of surfactant–containing aqueous wastes 416</p>
<p>19.8.7 Degradation of aqueous solutions of azo–dyes 419</p>
<p>19.8.8 Treatment of laboratory waste containing pharmaceuticals 419</p>
<p>19.9 Continuous monitoring of photocatalytic treatment 420</p>
<p>References 420</p>
<p>Section IV: Fields of Application 425</p>
<p>20 Green Bioanalytical Chemistry 427<br /> Tadashi Nishio and Hideko Kanazawa</p>
<p>20.1 The analytical techniques in bioanalysis 427</p>
<p>20.2 Environmental–responsive polymers 428</p>
<p>20.3 Preparation of a polymer–modified surface for the stationary phase of environmental–responsive chromatography 430</p>
<p>20.4 Temperature–responsive chromatography for green analytical methods 432</p>
<p>20.5 Biological analysis by temperature–responsive chromatography 432</p>
<p>20.5.1 Analysis of propofol in plasma using water as a mobile phase 434</p>
<p>20.5.2 Contraceptive drugs analysis using temperature gradient chromatography 435</p>
<p>20.6 Affinity chromatography for green bioseparation 436</p>
<p>20.7 Separation of biologically active molecules by the green chromatographic method 438</p>
<p>20.8 Protein separation by an aqueous chromatographic system 441</p>
<p>20.9 Ice chromatography 442</p>
<p>20.10 High–temperature liquid chromatography 443</p>
<p>20.11 Ionic liquids 443</p>
<p>20.12 The future in green bioanalysis 444</p>
<p>References 444</p>
<p>21 Infrared Spectroscopy in Biodiagnostics: A Green Analytical Approach 449<br /> Mohammadreza Khanmohammadi and Amir Bagheri Garmarudi</p>
<p>21.1 Infrared spectroscopy capabilities 449</p>
<p>21.2 Infrared spectroscopy of bio–active chemicals in a bio–system 451</p>
<p>21.3 Medical analysis of body fluids by infrared spectroscopy 453</p>
<p>21.3.1 Blood and its extracts 455</p>
<p>21.3.2 Urine 457</p>
<p>21.3.3 Other body fluids 457</p>
<p>21.4 Diagnosis in tissue samples via IR spectroscopic analysis 457</p>
<p>21.4.1 Main spectral characteristics 459</p>
<p>21.4.2 The role of data processing 460</p>
<p>21.4.3 Cancer diagnosis by FTIR spectrometry 465</p>
<p>21.5 New trends in infrared spectroscopy assisted biodiagnostics 468</p>
<p>References 470</p>
<p>22 Environmental Analysis 475<br /> Ricardo Erthal Santelli, Marcos Almeida Bezerra, Julio Carlos Afonso, Maria de F&aacute;tima Batista de Carvalho, Eliane Padua Oliveira and Aline Soares Freire</p>
<p>22.1 Pollution and its control 475</p>
<p>22.2 Steps of an environmental analysis 476</p>
<p>22.2.1 Sample collection 476</p>
<p>22.2.2 Sample preparation 476</p>
<p>22.2.3 Analysis 479</p>
<p>22.3 Green environmental analysis for water, wastewater and effluent 480</p>
<p>22.3.1 Major mineral constituents 480</p>
<p>22.3.2 Trace metal ions 481</p>
<p>22.3.3 Organic pollutants 483</p>
<p>22.4 Green environmental analysis applied for solid samples 485</p>
<p>22.4.1 Soil 485</p>
<p>22.4.2 Sediments 488</p>
<p>22.4.3 Wastes 492</p>
<p>22.5 Green environmental analysis applied for atmospheric samples 496</p>
<p>22.5.1 Gases 496</p>
<p>22.5.2 Particulates 497</p>
<p>References 497</p>
<p>23 Green Industrial Analysis 505<br /> Sergio Armenta and Miguel de la Guardia</p>
<p>23.1 Greening industrial practices for safety and cost reasons 505</p>
<p>23.2 The quality control of raw materials and end products 506</p>
<p>23.3 Process control 510</p>
<p>23.4 Effluent control 511</p>
<p>23.5 Working atmosphere control 514</p>
<p>23.6 The future starts now 515</p>
<p>References 515</p>
<p>Index 519</p>

Rubrieken

    Personen

      Trefwoorden

        Handbook of Green Analytical Chemistry