, ,

Principles and Theory for Data Mining and Machine Learning

Specificaties
Gebonden, 786 blz. | Engels
Springer New York | 2009e druk, 2009
ISBN13: 9780387981345
Rubricering
Springer New York 2009e druk, 2009 9780387981345
Onderdeel van serie Springer Series in Statistics
€ 300,99
Levertijd ongeveer 8 werkdagen

Samenvatting

Extensive treatment of the most up-to-date topics

Provides the theory and concepts behind popular and emerging methods

Range of topics drawn from Statistics, Computer Science, and Electrical Engineering

Specificaties

ISBN13:9780387981345
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:786
Uitgever:Springer New York
Druk:2009

Inhoudsopgave

Variability, Information, and Prediction.- Local Smoothers.- Spline Smoothing.- New Wave Nonparametrics.- Supervised Learning: Partition Methods.- Alternative Nonparametrics.- Computational Comparisons.- Unsupervised Learning: Clustering.- Learning in High Dimensions.- Variable Selection.- Multiple Testing.
€ 300,99
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        Principles and Theory for Data Mining and Machine Learning