Shape Optimization by the Homogenization Method

Specificaties
Gebonden, 458 blz. | Engels
Springer New York | 2002e druk, 2001
ISBN13: 9780387952987
Rubricering
Springer New York 2002e druk, 2001 9780387952987
Onderdeel van serie Applied Mathematical Sciences
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book provides an introduction to the theory and numerical developments of the homogenization method. It's main features are: a comprehensive presentation of homogenization theory; an introduction to the theory of two-phase composite materials; a detailed treatment of structural optimization by using homogenization; a complete discussion of the resulting numerical algorithms with many documented test problems. It will be of interest to researchers, engineers, and advanced graduate students in applied mathematics, mechanical engineering, and structural optimization.

Specificaties

ISBN13:9780387952987
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:458
Uitgever:Springer New York
Druk:2002

Inhoudsopgave

1 Homogenization.- 1.1 Introduction to Periodic Homogenization.- 1.1.1 A Model Problem in Conductivity.- 1.1.2 Two-scale Asymptotic Expansions.- 1.1.3 Variational Characterizations and Estimates of the Effective Tensor.- 1.1.4 Generalization to the Elasticity System.- 1.2 Definition of H-convergence.- 1.2.1 Some Results on Weak Convergence.- 1.2.2 Problem Statement.- 1.2.3 The One-dimensional Case.- 1.2.4 Main Results.- 1.3 Proofs and Further Results.- 1.3.1 Tartar’s Method.- 1.3.2 G-convergence.- 1.3.3 Homogenization of Eigenvalue Problems.- 1.3.4 A Justification of Periodic Homogenization.- 1.3.5 Homogenization of Laminated Structures.- 1.3.6 Corrector Results.- 1.4 Generalization to the Elasticity System.- 1.4.1 Problem Statement.- 1.4.2 H-convergence.- 1.4.3 Lamination Formulas.- 2 The Mathematical Modeling of Composite Materials.- 2.1 Homogenized Properties of Composite Materials.- 2.1.1 Modeling of Composite Materials.- 2.1.2 The G-closure Problem.- 2.2 Conductivity.- 2.2.1 Laminated Composites.- 2.2.2 Hashin-Shtrikman Bounds.- 2.2.3 G-closure of Two Isotropic Phases.- 2.3 Elasticity.- 2.3.1 Laminated Composites.- 2.3.2 Hashin-Shtrikman Energy Bounds.- 2.3.3 Toward G-closure.- 2.3.4 An Explicit Optimal Bound for Shape Optimization.- 3 Optimal Design in Conductivity.- 3.1 Setting of Optimal Shape Design.- 3.1.1 Definition of a Model Problem.- 3.1.2 A first Mathematical Analysis.- 3.1.3 Multiple State Equations.- 3.1.4 Shape Optimization as a Degeneracy Limit.- 3.1.5 Counterexample to the Existence of Optimal Designs.- 3.2 Relaxation by the Homogenization Method.- 3.2.1 Existence of Generalized Designs.- 3.2.2 Optimality Conditions.- 3.2.3 Multiple State Equations.- 3.2.4 Gradient of the Objective Function.- 3.2.5 Self-adjoint Problems.- 3.2.6 Counterexample to the Uniqueness of.- Optimal Designs.- 4 Optimal Design in Elasticity.- 4.1 Two-phase Optimal Design.- 4.1.1 The Original Problem.- 4.1.2 Counterexample to the Existence of Optimal Designs.- 4.1.3 Relaxed Formulation of the Problem.- 4.1.4 Compliance Optimization.- 4.1.5 Counterexample to the Uniqueness of Optimal Designs.- 4.1.6 Eigenfrequency Optimization.- 4.2 Shape Optimization.- 4.2.1 Compliance Shape Optimization.- 4.2.2 The Relaxation Process.- 4.2.3 Link with the Michell Truss Theory.- 5 Numerical Algorithms.- 5.1 Algorithms for Optimal Design in Conductivity.- 5.1.1 Optimality Criteria Method.- 5.1.2 Gradient Method.- 5.1.3 A Convergence Proof.- 5.1.4 Numerical Examples.- 5.2 Algorithms for Structural Optimization.- 5.2.1 Compliance Optimization.- 5.2.2 Numerical Examples.- 5.2.3 Technical Algorithmic Issues.- 5.2.4 Penalization of Intermediate Densities.- 5.2.5 Quasiconvexification versus Convexification.- 5.2.6 Multiple Loads Optimization.- 5.2.7 Eigenfrequency Optimization.- 5.2.8 Partial Relaxation.

Rubrieken

    Personen

      Trefwoorden

        Shape Optimization by the Homogenization Method