,

Histidine Kinases in Signal Transduction

Specificaties
Gebonden, blz. | Engels
Elsevier Science | e druk, 2002
ISBN13: 9780123724847
Rubricering
Elsevier Science e druk, 2002 9780123724847
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Living cells are constantly sensing environmental changes, and their abilities to sense these changes and adapt to them are essential for their survival. In bacteria, histidine kinases are the major sensors for these environmental stresses, enabling cells to adapt to new growth conditions.

Written by leading experts in the field, this book provides an up-to-date and comprehensive review on the structure and function of histidine kinases. It also provides extensive information on the physiological roles of histidine kinases in bacteria and eukaryotes.

An an essential reference for cell biologists, microbiologists, molecular biologists, and biochemists interested in signal transduction. Experimental biologists and pharmacologists studying signal transduction systems in living organisms will also find it a valuable research tool.

Specificaties

ISBN13:9780123724847
Taal:Engels
Bindwijze:Gebonden

Inhoudsopgave

<br>Preface</br><br>Contributors</br><br>1 Histidine Kinases: Introductory Remarks</br><br> Introduction</br><br> Basic Structure of Histidine Kinases (HKs)</br><br> Uniqueness of HKs</br><br> Difference between HKs and Ser/Thr/Tyr Kinases</br><br> Signal Transduction Mechanism</br><br> Regulation of Kinase and Phosphatase Activities: Switch Model and Rheostat Model</br><br> Concluding Remarks</br><br> References</br><br>2 The Histidine Kinase Family: Structures of Essential Building Blocks</br><br> Introduction</br><br> Kinase/Phosphatase Core Domain</br><br> Phosphotransfer Domain</br><br> Considerations on Domain Interactions</br><br> Concluding Remarks</br><br> References</br><br>3 Regulation of Porins in Escherichia coli by the Osmosensing Histidine Kinase~hosphatase EnvZ</br><br> Introduction</br><br> Domain A Is the Catalytic Domain</br><br> Domain B Is the Catalysis-Assisting and ATP-Binding Domain</br><br> Monomeric Histidine Kinase: Topological Arrangement between Domain A and Domain B</br><br> Role of DNA in EnvZ Function</br><br> Stoichiometric Complex Formation between EnvZ and OmpR</br><br> Regulation of Kinase and Phosphatase Activities: Switch Model versus Rheostat Model</br><br> Mechanism of Osmoregulation</br><br> Concluding Remarks</br><br> References</br><br>4 Structure and Function of CheA, the Histidine Kinase Central to Bacterial Chemotaxis</br><br> Introduction</br><br> Modular Structure of CheA</br><br> A Superfamily of Histidine Kinases and ATPases</br><br> Nucleotide Binding by CheA P4 and the GHL ATPases</br><br> ATP Hydrolysis and Conformation of P4</br><br> HPt Domain P1 and Phosphoryl Transfer</br><br> P2 Domain and Response Regulator Coupling</br><br> A Separate Dimerization Domain</br><br> Receptor Coupling by the P5 Regulatory Domain</br><br> Is Flexibility between Domains Important for Signaling?</br><br> Controlling Protein-Protein Interactions with ATP</br><br> Prospects for the Design of Antibiotics Directed at CheA</br><br> What Is Next?</br><br> References</br><br>5 Transmembrane Signaling and the Regulation of Histidine Kinase Activity</br><br> Introduction</br><br> Membrane Receptor Kinases</br><br> Type I Histidine Kinase Receptors</br><br> Receptors with Several Membrane-Spanning Segments</br><br> Transmembrane Signaling in Bacterial Chemotaxis</br><br> Conclusions</br><br> References</br><br>6 Structure-Function Relationships: Chemotaxis and Ethylene Receptors</br><br> Introduction</br><br> Chemotaxis and Chemoreceptors</br><br> The Ethylene Receptor</br><br> Chemoreceptors and Membrane-Bound Histidine Proteins Kinases</br><br> References</br><br>7 New Insights into the Mechanism of the Kinase and Phosphatase Activities of Escherichia coli NRH (NtrB) and Their Regulation by the PII Protein</br><br> Introduction</br><br> Mechanism of NRII Autophosphorylation and Regulation of This Activity by PII</br><br> Regulation of the Transphosphorylation Activity of NRII by PII</br><br> Evidence for Conformational Alteration of NRII by PII Binding</br><br> Mapping the Interaction of PII with NRII</br><br> Mapping the Activities of NRII</br><br> Explaining the Activities of Mutant Forms of NRII</br><br> References</br><br>8 Role of the Histidine-Containing Phosphotransfer Domain (HPt) in the Muhistep Phosphorelay through the Anaerobic Hybrid Sensor, ArcB</br><br> Introduction</br><br> HPt Domain</br><br> Structure and Function of Common HPt Domains</br><br> Multistep ArcB→ArcA Phosphorelay System in Escherichia coli Anaerobiosis</br><br> Advantage of Multistep Phosphorelay</br><br> Multisignaling Circuitry of the ArcB→ArcA Phosphorelay</br><br> Phospho-HPt Phosphatase Is Involved in the ArcB→ArcA Signaling Circuitry</br><br> Physiological Role of SixA-Phosphatase in Response to Anaerobic Respiratory Conditions</br><br> Cross-Phosphorelay Occurs on OmpR through EnvZ Osmosensor and ArcB Anaerosensor</br><br> Atypical HPt Factor Is Involved in the Multistep RcsC→YojN→RcsB Phosphorelay</br><br> HPt Domains in Higher Plants</br><br> Concluding Remarks</br><br> References </br><br>9 Genome-Wide Analysis of Escherichia coli Histidine Kinases</br><br> Introduction</br><br> Histidine Kinase Genes in the E. coli Genome</br><br> Versatility of E. coli Histidine Kinases</br><br> Deletion Analysis of Every Histidine Kinase Gene in the E. coli Genome</br><br> DNA Microarray Analysis of Histidine Kinases for Gene Regulations</br><br> References</br><br>10 Signal Transmission and Specificity in the Sporulation Phosphorelay of Bacillus subtilis</br><br> Introduction</br><br> Structural Characterization of Phosphorelay Components</br><br> Interactions of the Response Regulator with the Phosphotransferase Domain</br><br> Conclusion</br><br> References</br><br>11 Histidine Kinases: Extended Relationship with GHL ATPases</br><br> Introduction</br><br> Diverse Functions Supported by a Conserved ATP-Binding Site</br><br> Features of the ATP-Binding Site</br><br> Mechanistic Implications</br><br> Closing Remarks</br><br> References</br><br>12 Response Regulator Proteins and Their Interactions with Histidine Protein Kinases</br><br> Introduction</br><br> Regulatory Domains</br><br> Effector Domains</br><br> Regulation of Response Regulatory Phosphorylation</br><br> Interactions of Response Regulators with Histidine Kinases and Histidine-Containing Phosphotransfer Domains</br><br> Perspectives</br><br> References</br><br>13 Cyanophytochromes, Bacteriophytochromes, and Plant Phytochromes: Light-Regulated Kinases Related to Bacterial Two-Component Regulators</br><br> Introduction to Phytochromes (Phys)</br><br> Phys as Proteins Kinases?</br><br> Discovery of Cyanophytochromes (CphPs) and Bacteriophytochromes (BphPs)</br><br> Photochemical Properties of CphPs and BphPs</br><br> Histidine Kinase Domains and Kinase Activity for CphPs and BphPs</br><br> Biological Functions of Prokaryotic Phys</br><br> Do Higher Plant Phys Function as Two-Component Histidine Kinases?</br><br> Functions of the Kinase Activity of Phys</br><br> BphP, CphP, and Phy Evolution</br><br> Conclusions</br><br> References</br><br>14 Histidine Kinases in the Cyanobacterial Circadian System</br><br> Introduction</br><br> Cyanobacterial Circadian Rhythms</br><br> Molecular Genetics of Cyanobacterial Circadian System: Kai Genes</br><br> SasA, a KaiC-Binding Histidine Kinase as a Circadian Amplifier</br><br> CikA, a Bacteriophytochrome Family Histidine Kinase as a Circadian Photic Input Factor</br><br> Perspectives: Toward Further Understanding of His-to-Asp Signaling</br><br> Pathways in the Circadian Network in Cyanobacteria</br><br> References</br><br>15 Two-Component Control of Quorum Sensing in Gram-Negative Bacteria</br><br> Introduction</br><br> Quorum Sensing in Vibrio harveyi</br><br> Quorum Sensing in Myxococcus xanthus</br><br> Conclusions</br><br> References</br><br>16 Intercellular Communication in Gram-Positive Bacteria Depends on Peptide Pheromones and Their Histidine Kinase Receptors</br><br> Introduction</br><br> Intercellular Communication by Unmodified Peptides</br><br> Intercellular Communication by Modified Peptides</br><br> Bacteria Speak Different Languages</br><br> Peptide Pheromones Depend on Histidine Kinase Receptors</br><br> The HPK10 Subfamily of Histidine Kinases</br><br> References</br><br>17 Initiation of Bacterial Killing by Two-Component Sensing of a "Death Peptide": Development of Antibiotic Tolerance in Streptococcus pneumoniae</br><br> Introduction</br><br> Cell Death and Signal Transduction</br><br> Summary and Perspectives</br><br> References</br><br>18 Role of Multiple Sensor Kinases in Cell Cycle Progression and Differentiation in Caulobacter crescentus</br><br> Introduction</br><br> Temporal and Spatial Control of Cell Cycle Events</br><br> Levels of Developmental Regulation</br><br> Control of Differentiation by Cell Cycle Checkpoints</br><br> Two-Component Signal Transduction and Cell Cycle Regulation</br><br> Summary and Perspectives</br><br> References</br><br>19 The Slnl-Ypdl-Sskl Multistep Phosphorelay System That Regulates an Osmosensing MAP Kinase Cascade in Yeast</br><br> Introduction</br><br> The Common Downstream Pathway</br><br> The SLN 1 Branch</br><br> The SHO 1 Branch</br><br> Concluding Remarks</br><br> References</br><br>20 Histidine Kinases of Dictyostelium</br><br> Introduction </br><br> Eukaryotic Histidine Kinases</br><br> Dictyostelium Histidine Kinases</br><br> Phenotypic Analyses</br><br> Double Mutants</br><br> Structure and Function of DhkA</br><br> The Late Adenylyl Cyclase ACR</br><br> Summary and Perspectives</br><br> References</br><br>21 Ethylene Perception in Arabidopsis by the ETR1 Receptor Family: Evaluating a Possible Role for Two-Component Signaling in Plant Ethylene Responses</br><br> Introduction</br><br> ETR1 Family Gene Structure and Biochemistry</br><br> Ethylene Sensor Domain</br><br> GAF-like Domain</br><br> Histidine Kinase-Coupled Receptor</br><br> Receiver Domain</br><br> Kinase Activity in the Cytosolic Portion of ETR1</br><br> Mutational Analysis of the Ethylene Pathway</br><br> TwomComponent Signaling through MAPk Kinases in Saccharomyces cerevesiae and Arabidopsis</br><br> References</br><br>22 Pathogenicity and Histidine Kinases: Approaches Toward the Development of a New Generation of Antibiotics</br><br> Introduction</br><br> Are Histidine Kinases Good Antibacterial Targets?</br><br> Alternatives to High Throughput Screens: Possibilities for Structure-Based Screening for Identification Histidine of Kinase Inhibitors</br><br> References</br><br>23 Molecular Evolution of Histidine Kinases</br><br> Introduction</br><br> Domains of Histidine Kinases</br><br> Evolution of Histidine Kinases</br><br> Conclusion</br><br> References</br><br>Index</br>

Rubrieken

    Personen

      Trefwoorden

        Histidine Kinases in Signal Transduction