,

Gaseous Hydrogen Embrittlement of Materials in Energy Technologies

Mechanisms, Modelling and Future Developments

Specificaties
Paperback, blz. | Engels
Elsevier Science | e druk, 2016
ISBN13: 9780081016411
Rubricering
Elsevier Science e druk, 2016 9780081016411
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 2 is divided into three parts, part one looks at the mechanisms of hydrogen interactions with metals including chapters on the adsorption and trap-sensitive diffusion of hydrogen and its impact on deformation and fracture processes. Part two investigates modern methods of modelling hydrogen damage so as to predict material-cracking properties. The book ends with suggested future directions in science and engineering to manage the hydrogen embrittlement of high-performance metals in energy systems.With its distinguished editors and international team of expert contributors, Volume 2 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation.

Specificaties

ISBN13:9780081016411
Taal:Engels
Bindwijze:Paperback

Inhoudsopgave

<p>Contributor contact details</p> <p>Introduction</p> <p>Part I: Mechanisms of hydrogen interactions with metals</p> <p>Chapter 1: Hydrogen adsorption on the surface of metals</p> <p>Abstract:</p> <p>1.1 Introduction</p> <p>1.2 Adsorption effect</p> <p>1.3 Elementary processes in adsorption</p> <p>1.4 The structure of the H–Me adsorption complex</p> <p>1.5 Kinetic equations and equilibrium</p> <p>1.6 Conclusions</p> <p>Chapter 2: Analysing hydrogen in metals: bulk thermal desorption spectroscopy (TDS) methods</p> <p>Abstract:</p> <p>2.1 Introduction</p> <p>2.2 Principle of thermal desorption spectroscopy (TDS) measurements</p> <p>2.3 Experimental aspects of thermal desorption spectroscopy (TDS)</p> <p>2.4 Complementary techniques</p> <p>2.5 Conclusion</p> <p>Chapter 3: Analyzing hydrogen in metals: surface techniques</p> <p>Abstract:</p> <p>3.1 Introduction</p> <p>3.2 Available techniques for analyzing hydrogen</p> <p>3.3 Methods for analyzing hydrogen in metals: basic principles</p> <p>3.4 Applications of hydrogen analysis methods</p> <p>3.5 Ion beam-based methods</p> <p>3.6 Conclusion</p> <p>Chapter 4: Hydrogen diffusion and trapping in metals</p> <p>Abstract:</p> <p>4.1 Introduction: hydrogen uptake</p> <p>4.2 Solubility of hydrogen in metals</p> <p>4.3 Principles of hydrogen diffusion and trapping</p> <p>4.4 Modelling of hydrogen diffusion and trapping</p> <p>4.5 Measurement of hydrogen diffusion</p> <p>4.6 Hydrogen diffusion data</p> <p>4.7 Conclusions</p> <p>4.8 Acknowledgements</p> <p>Chapter 5: Control of hydrogen embrittlement of metals by chemical inhibitors and coatings</p> <p>Abstract:</p> <p>5.1 Introduction</p> <p>5.2 Chemical barriers to hydrogen environment embrittlement (HEE): gaseous inhibitors</p> <p>5.3 Physical barriers to hydrogen environment embrittlement (HEE)</p> <p>5.4 Conclusions and future trends</p> <p>Chapter 6: The role of grain boundaries in hydrogen induced cracking (HIC) of steels</p> <p>Abstract:</p> <p>6.1 Introduction: modes of cracking</p> <p>6.2 Impurity effects</p> <p>6.3 Temper embrittlement and hydrogen</p> <p>6.4 Tempered-martensite embrittlement and hydrogen</p> <p>6.5 Future trends</p> <p>6.6 Conclusions</p> <p>Chapter 7: Influence of hydrogen on the behavior of dislocations</p> <p>Abstract:</p> <p>7.1 Introduction</p> <p>7.2 Dislocation motion</p> <p>7.3 Evidence for hydrogen dislocation interactions</p> <p>7.4 Discussion</p> <p>7.5 Conclusions</p> <p>7.6 Acknowledgements</p> <p>Part II: Modelling hydrogen embrittlement</p> <p>Chapter 8: Modeling hydrogen induced damage mechanisms in metals</p> <p>Abstract:</p> <p>8.1 Introduction</p> <p>8.2 Pros and cons of proposed mechanisms</p> <p>8.3 Evolution of decohesion models</p> <p>8.4 Evolution of shear localization models</p> <p>8.5 Summary</p> <p>8.6 Conclusions</p> <p>8.7 Acknowledgements</p> <p>Chapter 9: Hydrogen effects on the plasticity of face centred cubic (fcc) crystals</p> <p>Abstract:</p> <p>9.1 Introduction and scope</p> <p>9.2 Study of dynamic interactions and elastic binding by static strain ageing (SSA)</p> <p>9.3 Modelling in the framework of the elastic theory of discrete dislocations</p> <p>9.4 Experiments on face centred cubic (fcc) single crystals oriented for single glide</p> <p>9.5 Review of main conclusions</p> <p>9.6 Future trends</p> <p>Chapter 10: Continuum mechanics modeling of hydrogen embrittlement</p> <p>Abstract:</p> <p>10.1 Introduction</p> <p>10.2 Basic concepts</p> <p>10.3 Crack tip fields: asymptotic elastic and plastic solutions</p> <p>10.4 Crack tip fields: finite deformation blunting predictions</p> <p>10.5 Application of crack tip fields and additional considerations</p> <p>10.6 Stresses around dislocations and inclusions</p> <p>10.7 Conclusions</p> <p>10.8 Acknowledgement</p> <p>Chapter 11: Degradation models for hydrogen embrittlement</p> <p>Abstract:</p> <p>11.1 Introduction</p> <p>11.2 Subcritical intergranular cracking under gaseous hydrogen uptake</p> <p>11.3 Subcritical ductile cracking: gaseous hydrogen exposure at pressures less than 45 MPa or internal hydrogen</p> <p>11.4 Discussion</p> <p>11.5 Conclusions</p> <p>11.6 Acknowledgments</p> <p>Chapter 12: Effect of inelastic strain on hydrogen-assisted fracture of metals</p> <p>Abstract:</p> <p>12.1 Introduction</p> <p>12.2 Hydrogen embrittlement (HE) processes and assumptions</p> <p>12.3 Hydrogen damage models and assumptions</p> <p>12.4 Diffusion with dynamic trapping</p> <p>12.5 Discussion</p> <p>12.6 Conclusions</p> <p>12.8 Appendix: nomenclature</p> <p>Chapter 13: Development of service life prognosis systems for hydrogen energy devices</p> <p>Abstract:</p> <p>13.1 Introduction</p> <p>13.2 Current techniques for control of cracking in safety critical structures</p> <p>13.3 Future developments in crack control using prognostic systems</p> <p>13.4 Prognostic systems for crack control in hydrogen energy technologies</p> <p>13.5 Potential future research areas</p> <p>13.6 Conclusions</p> <p>Part III: The future</p> <p>Chapter 14: Gaseous hydrogen embrittlement of high performance metals in energy systems: future trends</p> <p>Abstract:</p> <p>14.1 Introduction</p> <p>14.2 Theory and modeling</p> <p>14.3 Nanoscale processes</p> <p>14.4 Dynamic crack tip processes</p> <p>14.5 Interfacial effects of hydrogen</p> <p>14.6 Measurement of localized hydrogen concentration</p> <p>14.7 Loading mode effects</p> <p>14.8 Hydrogen permeation barrier coatings</p> <p>14.9 Advances in codes and standards</p> <p>14.10 Conclusions</p> <p>Index</p>

Rubrieken

    Personen

      Trefwoorden

        Gaseous Hydrogen Embrittlement of Materials in Energy Technologies