<ul> <li>Related titles</li> <li>List of contributors</li> <li>Woodhead Publishing Series in Food Science, Technology and Nutrition</li> <li>Part One. Fermented foods and health<ul><li>1. Probiotic fermented foods and health promotion<ul><li>1.1. Introduction</li><li>1.2. Probiotic fermented foods and health promotion</li><li>1.3. Health benefits deriving from the consumption of probiotics</li><li>1.4. Gastrointestinal health</li><li>1.5. Immune health</li><li>1.6. Metabolic health</li><li>1.7. Summary</li><li>1.8. Future trends</li><li>1.9. Sources of further information and advice</li></ul></li><li>2. Exopolysaccharides from fermented dairy products and health promotion<ul><li>2.1. Introduction</li><li>2.2. Exopolysaccharides (EPSs) from fermented dairy products</li><li>2.3. Interaction with the human intestinal microbiome</li><li>2.4. Interaction with the immune system</li><li>2.5. Interaction with enteric pathogens and toxins</li><li>2.6. Diverse interactions and potential health benefits</li><li>2.7. Conclusions</li></ul></li><li>3. Bioactive peptides from fermented foods and health promotion<ul><li>3.1. Introduction</li><li>3.2. Release of bioactive peptides during microbial fermentation</li><li>3.3. Bioactive peptides in fermented dairy and soy products</li><li>3.4. Bioactive peptides in health promotion</li><li>3.5. Conclusions and future trends</li></ul></li><li>4. Conjugated linoleic acid production in fermented foods<ul><li>4.1. Introduction</li><li>4.2. Basic knowledge of conjugated linoleic acid (CLA)</li><li>4.3. CLA content of unprocessed food ingredients</li><li>4.4. Factors influencing the CLA content of raw materials, and the effect of animal diet on CLA content of milk and meat</li><li>4.5. CLA content of fermented food products</li><li>4.6. Health effects of CLA</li><li>4.7. Future trends</li></ul></li><li>5. Effect of fermentation on the phytochemical contents and antioxidant properties of plant foods<ul><li>5.1. Introduction</li><li>5.2. Effect of fermentation on phytochemical profiles of plant foods and the bioavailability of nutrients</li><li>5.3. Effect of fermentation on antioxidant properties of plant foods</li><li>5.4. Health-promoting effects of fermented plant foods: a case of phytochemical and antioxidant property changes</li><li>5.5. Conclusions</li></ul></li><li>6. Traditional cereal fermented foods as sources of functional microorganisms<ul><li>6.1. Introduction</li><li>6.2. Food fermentation processes</li><li>6.3. Antimicrobial proteins isolated from boza-related lactic acid bacteria</li><li>6.4. Fermented cereal-based food from Africa and Latin America</li><li>6.5. Starter cultures and cereal-based fermented food</li><li>6.6. Cereal-based probiotic foods</li></ul></li></ul></li> <li>Part Two. Fermentation microbiology<ul><li>7. Advanced methods for the identification, enumeration, and characterization of microorganisms in fermented foods<ul><li>7.1. The fermented food microbial ecosystem</li><li>7.2. Culture-dependent methods</li><li>7.3. Culture-independent methods: diversity in microbial communities</li><li>7.4. Culture-independent methods: metabolic activity in microbial communities</li><li>7.5. Recent insights: pyrosequencing</li><li>7.6. Conclusions</li></ul></li><li>8. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods<ul><li>8.1. Introduction</li><li>8.2. Metabolic engineering in industrial lactic acid bacteria (LAB)</li><li>8.3. Systems biology and metabolic engineering in LAB</li><li>8.4. Conclusions</li><li>8.5. Sources of further information and advice</li></ul></li><li>9. Designing wine yeast for the future<ul><li>9.1. Introduction</li><li>9.2. Accidental beginnings and ancient wisdom</li><li>9.3. Turning hindsight into foresight</li><li>9.4. The ancient art of winemaking meets frontier yeast science</li><li>9.5. Engineering yeast to make better wine</li><li>9.6. Future trends</li></ul></li><li>10. Modern approaches for isolation, selection, and improvement of bacterial strains for fermentation applications<ul><li>10.1. Introduction</li><li>10.2. Screening of strain collections</li><li>10.3. Classical strain improvement</li><li>10.4. Future trends</li><li>10.5. Sources of further information and advice</li></ul></li><li>11. Advances in starter culture technology: focus on drying processes<ul><li>11.1. Introduction</li><li>11.2. Protective agents</li><li>11.3. Starter culture fermentation process</li><li>11.4. Freeze drying for the production of dried starter cultures</li><li>11.5. Spray drying for the production of dried starter cultures</li><li>11.6. Vacuum drying for the production of dried starter cultures</li><li>11.7. Product characteristics and storage stability</li><li>11.8. Conclusion</li></ul></li></ul></li> <li>Part Three. Quality and safety of fermented foods<ul><li>12. Controlling the formation of biogenic amines in fermented foods<ul><li>12.1. Introduction</li><li>12.2. Molecular determinants of biogenic amine formation</li><li>12.3. Environmental factors involved in the production of biogenic amines</li><li>12.4. Techniques for the detection of biogenic amine-producing bacteria</li><li>12.5. Techniques for the detection of biogenic amines</li><li>12.6. Future trends</li><li>12.7. Legislation concerning biogenic amine content in food</li><li>12.8. Sources of further information and advice</li></ul></li><li>13. Biopreservation effects in fermented foods<ul><li>13.1. Preservation and biopreservation</li><li>13.2. Biopreservative effect of lactic and acetic acids</li><li>13.3. Biopreservative effect of phenyllactic acid</li><li>13.4. Biopreservative effect of diacetyl</li><li>13.5. Biopreservative effect of cyclic dipeptides (2,5-diketopiperazines)</li><li>13.6. Biopreservative effect of bacteriocins</li><li>13.7. Biopreservative effect of other compounds</li><li>13.8. Conclusions</li></ul></li><li>14. Lactic acid bacteria as antifungal agents<ul><li>14.1. Introduction</li><li>14.2. Natural antifungal compounds produced by lactic acid bacteria</li><li>14.3. Factors affecting production of antifungal compounds by lactic acid bacteria</li><li>14.4. Potential applications of lactic acid bacteria as antifungal compounds</li><li>14.5. Lactic acid bacteria and mycotoxins</li></ul></li></ul></li> <li>Part Four. Particular products, and approaches towards quality improvement and fermentation control<ul><li>15. Quality improvement and fermentation control in meat products<ul><li>15.1. Introduction</li><li>15.2. Types of fermented meats</li><li>15.3. Principles of manufacture of fermented meats</li><li>15.4. Microbiological and chemical changes during meat fermentation</li><li>15.5. Starter cultures</li><li>15.6. Microbiological safety</li><li>15.7. Recent and future trends</li><li>15.8. Sources of further information and advice</li></ul></li><li>16. Quality improvement and fermentation control in fish products<ul><li>16.1. Introduction</li><li>16.2. Salted and fermented fish products</li><li>16.3. Narezushi</li><li>16.4. Functionality of lactic-acid fermented fish foods</li></ul></li><li>17. Quality improvement and fermentation control in dough fermentations<ul><li>17.1. Introduction</li><li>17.2. Advances in understanding of microbiota and physiology</li><li>17.3. Physiology and its impact on bread quality</li><li>17.4. Developments in use of starter cultures</li><li>17.5. Quality and safety issues</li><li>17.6. Health benefits</li><li>17.7. Future trends</li></ul></li><li>18. Quality, safety, biofunctionality and fermentation control in soya<ul><li>18.1. Introduction</li><li>18.2. Fermented soya products</li><li>18.3. Quality and food safety aspects</li><li>18.4. Biofunctionality and health aspects</li><li>18.5. Future trends and research needs</li><li>18.6. Sources of further information and advice</li></ul></li><li>19. The microbial dynamics of wine fermentation<ul><li>19.1. Introduction</li><li>19.2. Overview of the winemaking process: from vineyard to bottle</li><li>19.3. Pre-fermentation microbiota</li><li>19.4. Fermentation microbiota</li><li>19.5. Post-fermentation microbiota</li><li>19.6. Methods of diversity assessment</li><li>19.7. Factors impacting the presence and persistence of microbes</li><li>19.8. Dynamics of yeast during the primary fermentation phase</li><li>19.9. Advances in understanding yeast fermentation physiology</li><li>19.10. Future trends</li><li>19.11. Sources of further information and advice</li></ul></li><li>20. Quality improvement and fermentation control in beer<ul><li>20.1. Introduction</li><li>20.2. Genetic improvement of brewer’s yeast</li><li>20.3. Anaerobic beer contaminants</li><li>20.4. New trends in fermentation</li><li>20.5. New products: finding profitable niches</li><li>20.6. Beer in relation to nutrition and health</li><li>20.7. Future trends</li></ul></li><li>21. Coffee: fermentation and microbiota<ul><li>21.1. Introduction</li><li>21.2. Coffee processing</li><li>21.3. The microbiology of coffee fermentation</li><li>21.4. Towards the use of starter cultures to optimize fermentation</li><li>21.5. Mycotoxin production</li><li>21.6. Conclusion</li></ul></li><li>22. Quality improvement and fermentation control in vegetables<ul><li>22.1. Introduction</li><li>22.2. History and present product range</li><li>22.3. Food fermentations: complex networks</li><li>22.4. Technological factors</li><li>22.5. Ingredients and additives</li><li>22.6. Microbiology of fermentation</li><li>22.7. Faulty products and spoilage</li><li>22.8. Kimchi</li><li>22.9. Future trends</li></ul></li></ul></li> <li>Index</li> </ul>