Modern Gas Turbine Systems

High Efficiency, Low Emission, Fuel Flexible Power Generation

Specificaties
Paperback, blz. | Engels
Elsevier Science | e druk, 2016
ISBN13: 9780081013847
Rubricering
Elsevier Science e druk, 2016 9780081013847
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Modern gas turbine power plants represent one of the most efficient and economic conventional power generation technologies suitable for large-scale and smaller scale applications. Alongside this, gas turbine systems operate with low emissions and are more flexible in their operational characteristics than other large-scale generation units such as steam cycle plants. Gas turbines are unrivalled in their superior power density (power-to-weight) and are thus the prime choice for industrial applications where size and weight matter the most. Developments in the field look to improve on this performance, aiming at higher efficiency generation, lower emission systems and more fuel-flexible operation to utilise lower-grade gases, liquid fuels, and gasified solid fuels/biomass. Modern gas turbine systems provides a comprehensive review of gas turbine science and engineering.The first part of the book provides an overview of gas turbine types, applications and cycles. Part two moves on to explore major components of modern gas turbine systems including compressors, combustors and turbogenerators. Finally, the operation and maintenance of modern gas turbine systems is discussed in part three. The section includes chapters on performance issues and modelling, the maintenance and repair of components and fuel flexibility.Modern gas turbine systems is a technical resource for power plant operators, industrial engineers working with gas turbine power plants and researchers, scientists and students interested in the field.

Specificaties

ISBN13:9780081013847
Taal:Engels
Bindwijze:Paperback

Inhoudsopgave

<p>Contributor contact details</p> <p>Woodhead Publishing Series in Energy</p> <p>Part I: Overview of modern gas turbine systems</p> <p>Chapter 1: Introduction to gas turbines</p> <p>Abstract:</p> <p>1.1 Introduction</p> <p>1.2 The importance of gas turbines for worldwide CO2 reduction</p> <p>1.3 Importance of gas turbines for the aviation sector</p> <p>1.4 Importance of gas turbines for the power generation sector</p> <p>1.5 Efficiency improvement: impact on other issues</p> <p>1.5.1 Total life cycle costs: importance of efficiency measures</p> <p>1.5.2 Technologies for improved gas turbine and system efficiency</p> <p>1.6 Other trends in gas turbine technology</p> <p>1.7 Market trends</p> <p>1.8 Conclusion</p> <p>Chapter 2: Overview of gas turbine types and applications</p> <p>Abstract:</p> <p>2.1 Introduction</p> <p>2.2 Gas turbine types by application</p> <p>2.3 Power generation</p> <p>2.4 Aero-engines</p> <p>2.5 Industrial turbines</p> <p>2.6 Microturbines</p> <p>2.7 Advantages and limitations</p> <p>2.8 Future trends</p> <p>Chapter 3: Fundamentals of gas turbine cycles: thermodynamics, efficiency and specific power</p> <p>Abstract:</p> <p>3.1 Introduction</p> <p>3.2 Thermodynamic properties of gases</p> <p>3.3 The Joule–Brayton cycle</p> <p>3.4 Improvements to the simple cycle</p> <p>3.5 Combined gas–steam cycles</p> <p>3.6 Basics of blade cooling</p> <p>3.7 Conclusion and future trends</p> <p>Part II: Modern gas turbine systems and major components</p> <p>Chapter 4: Compressors in gas turbine systems</p> <p>Abstract:</p> <p>4.1 Introduction: role of the compressor</p> <p>4.2 Types of compressor systems</p> <p>4.3 Stationary gas turbine compressor elements</p> <p>4.4 Compressor characteristic parameters</p> <p>4.5 Operational requirements inside a gas turbine</p> <p>4.6 Compressor design process</p> <p>4.7 Technological trends and special features</p> <p>4.8 Acknowledgement</p> <p>4.10 Appendix: variables and indexes</p> <p>Chapter 5: Combustors in gas turbine systems</p> <p>Abstract:</p> <p>5.1 Introduction</p> <p>5.2 Design principles</p> <p>5.3 Combustor operation</p> <p>5.4 Fuel flexibility</p> <p>5.5 Future trends</p> <p>Chapter 6: Turbines for industrial gas turbine systems</p> <p>Abstract:</p> <p>6.1 Introduction</p> <p>6.2 Interfaces and integration</p> <p>6.3 Aerodynamics</p> <p>6.4 Cooling</p> <p>6.5 Durability and damage mechanisms</p> <p>6.6 Typical parts and interfaces</p> <p>6.7 Future trends</p> <p>Chapter 7: Heat exchangers and heat recovery processes in gas turbine systems</p> <p>Abstract:</p> <p>7.1 Introduction</p> <p>7.2 Heat exchange processes</p> <p>7.3 Heat transfer equipment</p> <p>7.4 Applications</p> <p>7.5 Future trends</p> <p>7.6 Conclusion</p> <p>7.10 Appendix: nomenclature</p> <p>Chapter 8: Turbogenerators in gas turbine systems</p> <p>Abstract:</p> <p>8.1 Introduction</p> <p>8.2 Generator component design</p> <p>8.3 The history of turbogenerator development</p> <p>8.4 Design concepts of turbogenerators for modern gas turbines</p> <p>8.5 Turbogenerator development for gas turbines</p> <p>8.6 Recent developments</p> <p>8.7 Future trends</p> <p>8.8 Acknowledgement</p> <p>Chapter 9: Materials and coatings developments for gas turbine systems and components</p> <p>Abstract:</p> <p>9.1 Introduction</p> <p>9.2 Turbine parts</p> <p>9.3 Combustor parts</p> <p>9.4 Coatings for hot gas path parts</p> <p>9.5 Ceramics for hot gas path parts</p> <p>9.6 Rotor parts</p> <p>9.8 Appendix: nomenclature</p> <p>Part III: Operation and maintenance of modern gas turbine systems</p> <p>Chapter 10: Gas turbine operation and combustion performance issues</p> <p>Abstract:</p> <p>10.1 Introduction</p> <p>10.2 Flame stabilisation mechanisms</p> <p>10.3 Emissions variations</p> <p>10.4 Combustion dynamics</p> <p>10.5 Future trends</p> <p>Chapter 11: Gas turbine performance modelling, analysis and optimisation</p> <p>Abstract:</p> <p>11.1 Introduction</p> <p>11.2 Design-point modelling of gas turbine cycles</p> <p>11.3 Steady flow energy equation</p> <p>11.4 The ideal simple gas turbine cycle</p> <p>11.5 Reversibility and efficiency</p> <p>11.6 Thermophysical properties of air and products of combustion</p> <p>11.7 Thermodynamic modelling of gas turbine components applicable for practical gas turbine cycles</p> <p>11.8 Determining component performance using specific heats</p> <p>11.9 Design-point performance modelling, analysis and performance optimisation of practical (shaft power) gas turbines</p> <p>11.10 Design-point performance modelling of aero gas turbines, analysis and optimisation</p> <p>11.11 Component characteristics</p> <p>11.12 Engine configurations</p> <p>11.13 Off-design performance prediction</p> <p>11.14 Transient performance modelling</p> <p>11.15 Off-design performance behaviour of gas turbine cycles</p> <p>11.16 Adaptive model-based control</p> <p>11.17 Future trends</p> <p>Chapter 12: Advanced gas turbine asset and performance management</p> <p>Abstract:</p> <p>12.1 Introduction</p> <p>12.2 Gas turbine degradation</p> <p>12.3 Hot gas path management</p> <p>12.4 Centre for remote monitoring and diagnostics (CMD)</p> <p>12.5 E-maintenance and future trends</p> <p>12.6 Key definitions</p> <p>12.7 Acknowledgement</p> <p>Chapter 13: Maintenance and repair of gas turbine components</p> <p>Abstract:</p> <p>13.1 Introduction</p> <p>13.2 Maintenance factors</p> <p>13.3 Outage cycle</p> <p>13.4 Advanced component repair technology</p> <p>13.5 Compressor cleaning</p> <p>13.6 Future trends</p> <p>13.7 Acknowledgement</p> <p>Chapter 14: Fuel flexibility in gas turbine systems: impact on burner design and performance</p> <p>Abstract:</p> <p>14.1 Introduction</p> <p>14.2 Primary fuel characterization</p> <p>14.3 Fuels directly introduced into gas turbine burners</p> <p>14.4 Integrated gasification combined cycle (IGCC) technology options with and without air-side integration and carbon capture and storage (CCS)</p> <p>14.5 Characterizing fuel gases</p> <p>14.6 Measures for extending operation range for fuel gases</p> <p>14.7 Characterizing liquid fuels</p> <p>14.8 Future trends</p> <p>Chapter 15: Carbon dioxide (CO2) capture and storage for gas turbine systems</p> <p>Abstract:</p> <p>15.1 Introduction</p> <p>15.2 CO2 capture technologies</p> <p>15.3 Impact of carbon capture and storage (CCS) on current gas turbines</p> <p>15.4 Novel approaches</p> <p>15.5 Implementation of carbon capture and storage (CCS) for gas turbines</p> <p>15.6 Conclusion</p> <p>15.7 Acknowledgements</p> <p>Chapter 16: Ultra-low nitrogen oxides (NOx) emissions combustion in gas turbine systems</p> <p>Abstract:</p> <p>16.1 Introduction</p> <p>16.2 The NASA clean combustor programme</p> <p>16.3 Acoustic resonance and catalytic combustion</p> <p>16.4 Thermal NOx formation</p> <p>16.5 Prompt NOx</p> <p>16.6 Predictions of thermal NOx</p> <p>16.7 Influence of mixing on thermal NOx</p> <p>16.8 Impact of fuel-and-air mixing quality on thermal NOx emissions</p> <p>16.9 Influence of air inlet temperature</p> <p>16.10 Influence of residence time in premixed combustion: reference velocity and reference Mach number</p> <p>16.11 Conclusions</p> <p>16.12 Acknowledgements</p> <p>Index</p>

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Modern Gas Turbine Systems