3D IC Integration and Packaging

Specificaties
Gebonden, blz. | Engels
McGraw-Hill Education | e druk, 2015
ISBN13: 9780071848060
Rubricering
McGraw-Hill Education e druk, 2015 9780071848060
Verwachte levertijd ongeveer 10 werkdagen

Samenvatting

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality,  authenticity, or access to any online entitlements included with the product.

A comprehensive guide to 3D IC integration and packaging technology

3D IC Integration and Packaging fully explains the latest microelectronics techniques for increasing chip density and maximizing performance while reducing power consumption. Based on a course developed by its author, this practical guide offers real-world problem-solving methods and teaches the trade-offs inherent in making system-level decisions. Explore key enabling technologies such as TSV, thin-wafer strength measurement and handling, microsolder bumping, redistribution layers, interposers, wafer-to-wafer bonding, chip-to-wafer bonding, 3D IC and MEMS, LED, and complementary metal-oxide semiconductor image sensors integration. Assembly, thermal management, and reliability are covered in complete detail.

3D IC Integration and Packaging covers:

• 3D integration for semiconductor IC packaging
• Through-silicon vias modeling and testing
• Stress sensors for thin-wafer handling and strength measurement
• Package substrate technologies
• Microbump fabrication, assembly, and reliability
• 3D Si integration
• 2.5D/3D IC integration
• 3D IC integration with passive interposer
• Thermal management of 2.5D/3D IC integration
• Embedded 3D hybrid integration
• 3D LED and IC integration
• 3D MEMS and IC integration
• 3D CMOS image sensors and IC integration
• PoP, chip-to-chip interconnects, and embedded fan-out WLP

Specificaties

ISBN13:9780071848060
Taal:Engels
Bindwijze:gebonden

Inhoudsopgave

1 3D Integration for Semiconductor IC Packaging<br/>1.1 Introduction<br/>1.2 3D Integration<br/>1.3 3D IC Packaging<br/>1.4 3D Si Integration<br/>1.5 3D IC Integration<br/>1.5.1 Hybrid Memory Cube<br/>1.5.2 Wide I/O DRAM and Wide I/O 2<br/>1.5.3 High Bandwidth Memory<br/>1.5.4 Wide I/O Memory (or Logic-on-Logic)<br/>1.5.5 Passive Interposer (2.5D IC Integration)<br/>1.6 Supply Chains before the TSV Era<br/>1.6.1 FEOL (Front-End-of-Line)<br/>1.6.2 BEOL (Back-End-of-Line)<br/>1.6.3 OSAT (Outsourced Semiconductor Assembly and Test)<br/>1.7 Supply Chains for the TSV Era—Who Makes the TSV?<br/>1.7.1 TSVs Fabricated by the Via-First Process<br/>1.7.2 TSVs Fabricated by the Via-Middle Process<br/>1.7.3 TSVs Fabricated by the Via-Last (from the Front Side) Process<br/>1.7.4 TSVs Fabricated by the Via-Last (from the Back Side) Process<br/>1.7.5 How About the Passive TSV Interposers?<br/>1.7.6 Who Wants to Fabricate the TSV for Passive Interposers?<br/>1.7.7 Summary and Recommendations<br/>1.8 Supply Chains for the TSV Era—Who Does the MEOL, Assembly, and Test?<br/>1.8.1 Wide I/O Memory (Face-to-Back) by TSV Via-Middle Fabrication Process<br/>1.8.2 Wide I/O Memory (Face-to-Face) by TSV Via-Middle Fabrication Process<br/>1.8.3 Wide I/O DRAM by TSV Via-Middle Fabrication Process<br/>1.8.4 2.5D IC Integration with TSV/RDL Passive Interposers<br/>1.8.5 Summary and Recommendations<br/>1.9 CMOS Images Sensors with TSVs<br/>1.9.1 Toshiba’s DynastronTM<br/>1.9.2 STMicroelectronics’ VGA CIS Camera Module<br/>1.9.3 Samsung’s S5K4E5YX BSI CIS<br/>1.9.4 Toshiba’s HEW4 BSI TCM5103PL<br/>1.9.5 Nemotek’s CIS<br/>1.9.6 SONY’s ISX014 Stacked Camera Sensor<br/>1.10 MEMS with TSVs<br/>1.10.1 STMicroelectronics’ MEMS Inertial Sensors<br/>1.10.2 Discera’s MEME Resonator<br/>1.10.3 Avago’s FBAR MEMS Filter<br/>1.11 References<br/>2 Through-Silicon Vias Modeling and Testing<br/>2.1 Introduction<br/>2.2 Electrical Modeling of TSVs<br/>2.2.1 Analytic Model and Equations for a Generic TSV Structure<br/>2.2.2 Verification of the Proposed TSV Model in Frequency Domain<br/>2.2.3 Verification of the Proposed TSV Model in Time Domain<br/>2.2.4 TSV Electrical Design Guideline<br/>2.2.5 Summary and Recommendations<br/>2.3 Thermal Modeling of TSVs<br/>2.3.1 Cu-Filled TSV Equivalent Thermal Conductivity Extraction<br/>2.3.2 Thermal Behavior of a TSV Cell<br/>2.3.3 Cu-Filled TSV Equivalent Thermal Conductivity Equations<br/>2.3.4 Verification of the TSV Equivalent Thermal Conductivity Equations<br/>2.3.5 Summary and Recommendations<br/>2.4 Mechanical Modeling and Testing of TSVs<br/>2.4.1 TEM between the Cu-Filled TSV and Its Surrounding Si<br/>2.4.2 Experimental Results on Cu Pumping during Manufacturing<br/>2.4.3 Cu Pumping under Thermal Shock Cycling<br/>2.4.4 Keep-Out-Zone of Cu-Filled TSVs<br/>2.4.5 Summary and Recommendations<br/>2.5 References<br/>3 Stress Sensors for Thin-Wafer Handling and Strength Measurement<br/>3.1 Introduction<br/>3.2 Design and Fabrication of Piezoresistive Stress Sensors<br/>3.2.1 Design of Piezoresistive Stress Sensors<br/>3.2.2 Fabrication of the Stress Sensors<br/>3.2.3 Summary and Recommendations<br/>3.3 Application of Stress Sensors in Thin-Wafer Handling<br/>3.3.1 Design, Fabrication, and Calibration of Piezoresistive Stress Sensors<br/>3.3.2 Stress Measurement in Wafer after Thinning<br/>3.3.3 Summary and Recommendations<br/>3.4 Application of Stress Sensors in Wafer Bumping<br/>3.4.1 Stresses after UBM Fabrication<br/>3.4.2 Stresses after Dry-Film Process<br/>3.4.3 Stresses after Solder Bumping Process<br/>3.4.4 Summary and Recommendations<br/>3.5 Application of Stress Sensors in Drop Test of Embedded Ultrathin Chips<br/>3.5.1 Test Vehicle and Fabrication<br/>3.5.2 Experimental Setup and Procedure<br/>3.5.3 In-Situ Stress Measurement Results<br/>3.5.4 Reliability Testing<br/>3.5.5 Summary and Recommendations<br/>3.6 References<br/>4 Package Substrate Technologies<br/>4.1 Introduction<br/>4.2 Package Substrate with Build-up Layers for Flip Chip 3D IC Integration<br/>4.2.1 Surface Laminate Circuit Technology<br/>4.2.2 The Trend in Package Substrate with Build-up Layers<br/>4.2.3 Summary and Recommendations<br/>4.3 Coreless Package Substrates<br/>4.3.1 Advantages and Disadvantages of Coreless Package Substrates<br/>4.3.2 Substitution of Si Interposer by Coreless Substrates<br/>4.3.3 Warpage Problem and Solution of Coreless Substrates<br/>4.3.4 Summary and Recommendations<br/>4.4 Recent Advance of Package Substrate with Build-up Layer<br/>4.4.1 Thin-Film Layers on Top of Build-up Layer of Package Substrate<br/>4.4.2 Warpage and Qualification Results<br/>4.4.3 Summary and Recommendations<br/>4.5 References<br/>5 Microbumps: Fabrication, Assembly, and Reliability<br/>5.1 Introduction<br/>5.2 Fabrication, Assembly, and Reliability of 25-μm-Pitch Microbumps<br/>5.2.1 Test Vehicle<br/>5.2.2 Structure of the Microbumps<br/>5.2.3 Structure of the ENIG Pads<br/>5.2.4 Fabrication of the 25-μm-Pitch Microbumps<br/>5.2.5 Fabrication of ENIG Bonding Pads on Si Carrier<br/>5.2.6 Thermal Compression Bonding Assembly<br/>5.2.7 Evaluation of the Underfill<br/>5.2.8 Reliability Assessment<br/>5.2.9 Summary and Recommendations<br/>5.3 Fabrication, Assembly, and Reliability of 20-μm-Pitch Microbumps<br/>5.3.1 Test Vehicle<br/>5.3.2 Assembly of Test Vehicle<br/>5.3.3 Formation of Microjoints by Thermocompression Bonding<br/>5.3.4 Microgap Filling<br/>5.3.5 Reliability Test<br/>5.3.6 Reliability Test Results and Discussion<br/>5.3.7 Failure Mechanism of the Microjoints<br/>5.3.8 Summary and Recommendations<br/>5.4 Fabrication, Assembly, and Reliability of 15-μm-Pitch Microbumps<br/>5.4.1 Microbumps and UBM Pads of the Test Vehicle<br/>5.4.2 Assembly<br/>5.4.3 Assembly with CuSn Solder Microbump and ENIG Pad<br/>5.4.4 Assembly with CuSn Solder Microbump and CuSn Solder Microbump<br/>5.4.5 Evaluation of Underfill<br/>5.4.6 Summary and Recommendations<br/>5.5 References<br/>6 3D Si Integration<br/>6.1 Introduction<br/>6.2 The Electronic Industry<br/>6.3 Moore’s Law and More-Than-Moore<br/>6.4 The Origin of 3D Integration<br/>6.5 Overview and Outlook of 3D Si Integration<br/>6.5.1 Bonding Methods for 3D Si Integration<br/>6.5.2 Cu-to-Cu (W2W) Bonding<br/>6.5.3 Cu-to-Cu (W2W) Bonding with Post-Annealing<br/>6.5.4 Cu-to-Cu (W2W) Bonding at Room Temperature<br/>6.5.5 SiO2-to-SiO2 (W2W) Bonding<br/>6.5.6 A Few Notes on W2W Bonding<br/>6.6 3D Si Integration Technology Challenges<br/>6.7 3D Si Integration EDA Challenges<br/>6.8 Summary and Recommendations<br/>6.9 References<br/>7 2.5D/3D IC Integration<br/>7.1 Introduction<br/>7.2 TSV Process for 3D IC Integration<br/>7.2.1 Tiny Vias on a Chip<br/>7.2.2 Via-First Process<br/>7.2.3 Via-Middle Process<br/>7.2.4 Via-Last from the Front-Side Process<br/>7.2.5 Via-Last from the Back-Side Process<br/>7.2.6 Summary and Recommendations<br/>7.3 The Potential Application of 3D IC Integration<br/>7.4 Memory-Chip Stacking<br/>7.4.1 The Chips<br/>7.4.2 The Potential Products<br/>7.4.3 Assembly Process<br/>7.5 Wide I/O Memory or Logic-on-Logic<br/>7.5.1 The Chips<br/>7.5.2 The Potential Products<br/>7.5.3 Assembly Process<br/>7.6 Wide I/O DRAM or Hybrid Memory Cube<br/>7.6.1 The Chips<br/>7.6.2 The Potential Products<br/>7.6.3 Assembly Process<br/>7.7 Wide I/O 2 and High Bandwidth Memory<br/>7.8 Wide I/O Interface (2.5D IC Integration)<br/>7.8.1 Real Applications of TSV/RDL Passive Interposers<br/>7.8.2 Fabrication of Interposers<br/>7.8.3 Fabrication of TSVs<br/>7.8.4 Fabrication of RDLs<br/>7.8.5 Fabrication of RDLs—Polymer/Cu-Plating Method<br/>7.8.6 Fabrication of RDLs—Cu Damascene Method<br/>7.8.7 A Note on Contact Aligner for Cu Damascene Method<br/>7.8.8 Back-Side Processing and Assembly<br/>7.8.9 Summary and Recommendations<br/>7.9 Thin-Wafer Handling<br/>7.9.1 Conventional Thin-Wafer Handling Method<br/>7.9.2 TI’s TSV-WCSP Integration Process<br/>7.9.3 TSMC’s Thin-Wafer Handling with Polymer<br/>7.9.4 TSMC’s Thin-Wafer Handling without Temporary Bonding and De-Bonding<br/>7.9.5 Thin-Wafer Handling with a Heat-Spreader Wafer<br/>7.9.6 Summary and Recommendations<br/>7.10 References<br/>8 3D IC Integration with Passive Interposer<br/>8.1 Introduction<br/>8.2 3D IC Integration with TSV/RDL Interposer<br/>8.3 TSV/RDL Interposer with Double-Sided Chip Attachments<br/>8.3.1 The Structure<br/>8.3.2 Thermal Analysis—Boundary Conditions<br/>8.3.3 Thermal Analysis—TSV Equivalent Model<br/>8.3.4 Thermal Analysis—Solder Bump/Underfill Equivalent Model<br/>8.3.5 Thermal Analysis—Results<br/>8.3.6 Thermomechanical Analysis—Boundary Conditions<br/>8.3.7 Thermomechanical Analysis—Material Properties<br/>8.3.8 Thermomechanical Analysis—Results<br/>8.3.9 Fabrication of the TSV<br/>8.3.10 Fabrication of the Interposer with Top-Side RDLs<br/>8.3.11 TSV Reveal of the Cu-Filled Interposer with Top-Side RDLs<br/>8.3.12 Fabrication of the Interposer with Bottom-Side RDLs<br/>8.3.13 Passive Electrical Characterization of the Interposer<br/>8.3.14 Final Assembly<br/>8.3.15 Summary and Recommendations<br/>8.4 TSV Interposer with Chips on Both Sides<br/>8.4.1 The Structure<br/>8.4.2 Thermal Analysis—Material Properties<br/>8.4.3 Thermal Analysis—Boundary Conditions<br/>8.4.4 Thermal Analysis—Result and Discussions<br/>8.4.5 Thermomechanical Analysis—Material Properties<br/>8.4.6 Thermomechanical Analysis—Boundary Conditions<br/>8.4.7 Thermomechanical Analysis—Results and Discussions<br/>8.4.8 Interposer Fabrication<br/>8.4.9 Microbump Wafer Bumping<br/>8.4.10 Final Assembly<br/>8.4.11 Summary and Recommendations<br/>8.5 Low-Cost TSH Interposer for 3D IC Integration<br/>8.5.1 The New Design<br/>8.5.2 Electrical Simulation<br/>8.5.3 Test Vehicle<br/>8.5.4 Top Chip with UBM/Pad and Cu Pillar<br/>8.5.5 Bottom Chip with UBM/Pad/Solder<br/>8.5.6 TSH Interposer Fabrication<br/>8.5.7 Final Assembly<br/>8.5.8 Reliability Assessments<br/>8.5.9 Summary and Recommendations<br/>8.6 References<br/>9 Thermal Management of 2.5D/3D IC Integration<b
r/>9.1 Introduction<br/>9.2 Design Philosophy<br/>9.3 The New Design<br/>9.4 Equivalent Model for Thermal Analysis<br/>9.5 Interposer with Chip/Heat Spreader on Its Top Side and Chip on Its Bottom Side<br/>9.5.1 The Structure<br/>9.5.2 Material Properties<br/>9.5.3 Boundary Conditions<br/>9.5.4 Simulation Results<br/>9.6 Interposer with Chip/Heat Spreader on Its Top Side and Chip/Heat Slug on Its Bottom Side<br/>9.6.1 The Structure and Boundary Conditions<br/>9.6.2 Simulation Results<br/>9.7 Interposer with Four Chips on Its Top Side with Heat Spreader<br/>9.7.1 The Structure<br/>9.7.2 Boundary Conditions<br/>9.7.3 Simulation Results<br/>9.7.4 Summary and Recommendations<br/>9.8 Thermal Performance between 2.5D and 3D IC Integrations<br/>9.8.1 The Structures<br/>9.8.2 The Finite Element Models<br/>9.8.3 Material Properties and Boundary Conditions<br/>9.8.4 Simulation Results—Low-Power Applications<br/>9.8.5 Simulation Results—High-Power Applications<br/>9.8.6 Summary and Recommendations<br/>9.9 Thermal Management System with TSV Interposers with Embedded Microchannels<br/>9.9.1 The Structure<br/>9.9.2 Adaptor<br/>9.9.3 Heat Exchanger<br/>9.9.4 Carriers<br/>9.9.5 System Integration<br/>9.9.6 Theoretical Analysis of the Pressure Drop<br/>9.9.7 Experimental Process<br/>9.9.8 Results and Discussions<br/>9.9.9 Summary and Recommendations<br/>9.10 References<br/>10 Embedded 3D Hybrid Integration<br/>10.1 Introduction<br/>10.2 Trends of Optoelectronic Products<br/>10.3 The Old Design—High-Frequency Data Link on PCB Using Optical Waveguides<br/>10.3.1 Polymer Optical Waveguide<br/>10.3.2 Simulations—Optical Coupling Models<br/>10.3.3 Simulations—System Link Design<br/>10.3.4 Assembly of the OECB<br/>10.3.5 Measurement Results of the OECB<br/>10.3.6 Summary and Recommendations<br/>10.4 The Old Design—Embedded Board-Level Optical Interconnects<br/>10.4.1 Fabrication of Polymer Waveguide<br/>10.4.2 Fabrication of the 45° Micro-Mirror<br/>10.4.3 Assembly Process of the OECB<br/>10.4.4 Fabrication Process of Vertical-Optical Channel<br/>10.4.5 Final Assembly<br/>10.4.6 Summary and Recommendations<br/>10.5 The New Designs<br/>10.6 An Embedded 3D Hybrid Integration Design Example<br/>10.6.1 Optical Design, Analysis, and Results<br/>10.6.2 Thermal Design, Analysis, and Results<br/>10.6.3 Mechanical Design, Analysis, and Results<br/>10.6.4 Summary and Recommendations<br/>10.7 Semi-Embedded TSV Interposer with Stress Relief Gap<br/>10.7.1 Design Philosophy<br/>10.7.2 Problem Definition<br/>10.7.3 Semi-Embedded TSV Interposer Subjected to Operating Condition<br/>10.7.4 Semi-Embedded TSV Interposer Subjected to an Environmental Condition<br/>10.7.5 Summary and Recommendations<br/>10.8 References<br/>11 3D LED and IC Integration<br/>11.1 Introduction<br/>11.2 Status and Outlook of Haitz’s Law<br/>11.3 LED Has Come a Long Way!<br/>11.4 Four Key Segments of LED Products<br/>11.4.1 Substrates for LED Epitaxial Deposition<br/>11.4.2 LED Device Fabrication<br/>11.4.3 Packaging Assembly and Test of LED<br/>11.4.4 LED Final Product Assembly<br/>11.4.5 Outlook of LED Products<br/>11.5 3D LED and IC Integration<br/>11.5.1 HP FCLED and Thin-Film FCLED<br/>11.5.2 3D LED and IC Integration Packages<br/>11.5.3 Manufacturing Process of 3D LED and IC Integration<br/>11.5.4 Summary and Recommendations<br/>11.6 2.5D IC and LED Integration<br/>11.6.1 LED Packaging Using Si-Substrate with Cavities and Cu-Filled TSVs<br/>11.6.2 Si-Substrate with Cavity and TSVs for LED Packaging<br/>11.6.3 LED Wafer-Level Packaging<br/>11.6.4 Summary and Recommendation<br/>11.7 Thermal Management of 3D LED and IC Integration<br/>11.7.1 The New Designs<br/>11.7.2 3D IC and LED Integration: A Design Example<br/>11.7.3 Boundary-Value Problem<br/>11.7.4 Simulation Results (Channel Height = 700 μm)<br/>11.7.5 Simulation Results (Channel Height = 350 μm)<br/>11.7.6 Summary and Recommendations<br/>11.8 References<br/>12 3D MEMS and IC Integration<br/>12.1 Introduction<br/>12.2 MEMS Packaging<br/>12.3 Design of 3D MEMS and IC Integration<br/>12.3.1 3D MEMS and IC Integration with Lateral Electrical Feed-Through<br/>12.3.2 3D MEMS and IC Integration with Vertical Electrical Feed-Through in ASIC<br/>12.3.3 3D MEMS and IC Integration with Vertical Electrical Feed-Through in the Package Cap<br/>12.3.4 3D MEMS and IC Integration with MEMS on ASIC with TSVs<br/>12.3.5 2.5D/2.25D MEMS and IC Integration<br/>12.4 Assembly Process of 3D MEMS and IC Integration<br/>12.4.1 3D MEMS and IC Integration with Lateral Electrical Feed-Through<br/>12.4.2 3D MEMS and IC Integration with Vertical Electrical Feed-Through in ASIC<br/>12.4.3 3D MEMS and IC Integration with Vertical Electrical Feed-Through in Package Cap<br/>12.4.4 A Note on Case 10—A Real 3D MEMS and IC Integration<br/>12.4.5 Summary and Recommendations<br/>12.5 Low-Temperature Bonding of 3D MEMS Packaging with Solders<br/>12.5.1 3D IC and MEMS Integration with Different Chip Sizes<br/>12.5.2 Cavity and TSVs in Cap Wafer<br/>12.5.3 MEMS Chip to ASIC Wafer (C2W) Bonding<br/>12.5.4 ASIC Wafer with MEMS Chips to Cap Wafer (W2W) Bonding<br/>12.5.5 Summary and Recommendations<br/>12.6 Recent Developments in Advanced MEMS Packaging<br/>12.6.1 TSVs for Wafer-Level Packaging of RF MEMS Devices<br/>12.6.2 Zero-Level Packaging for RF-MEMS Implementing TSVs and Metal Bonding<br/>12.6.3 MEMS Package Based on Si-Interposer Wafer with Cu-Filled TSVs<br/>12.6.4 Wafer-Scale Packaging for FBAR-Based Oscillators<br/>12.6.5 Summary and Recommendations<br/>12.7 References<br/>13 3D CMOS Image Sensor and IC Integration<br/>13.1 Introduction<br/>13.2 FI-CIS and BI-CIS<br/>13.3 3D CIS and IC Stacking<br/>13.3.1 The Structure<br/>13.3.2 Fabrication of the CIS Pixel Wafer and Logic IC Wafer<br/>13.4 3D CIS and IC Integration<br/>13.4.1 The Structure<br/>13.4.2 Fabrication Process Flow of the Coprocessor Wafer<br/>13.4.3 Fabrication Process Flow of the CIS Wafer<br/>13.4.4 Final Assembly<br/>13.5 Summary and Recommendations<br/>13.6 References<br/>14 3D IC Packaging<br/>14.1 Introduction<br/>14.2 Chip Stacking by Wirebonding<br/>14.2.1 Au Wire<br/>14.2.2 Cu Wire and Ag Wire<br/>14.3 Package-on-Package (PoP)<br/>14.3.1 Wirebonding PoP<br/>14.3.2 Flip Chip PoP<br/>14.3.3 Wirebonding Package on Flip Chip Package<br/>14.3.4 PoP in iPhone 5s<br/>14.4 Wafer-Level Packaging<br/>14.4.1 Fan-In WLP<br/>14.4.2 3D Chip-to-Chip WLP<br/>14.5 Fan-Out eWLP<br/>14.5.1 Fan-Out eWLP<br/>14.5.2 3D eWLP—Two-Chip Stacking<br/>14.5.3 3D eWLP—Chip on eWLP (Face-to-Face)<br/>14.5.4 3D eWLP—Chip on eWLP (Face-to-Back)<br/>14.5.5 3D eWLP—Package on eWLP<br/>14.5.6 3D eWLP—eWLP on eWLP<br/>14.6 Embedded Panel-Level Packaging<br/>14.6.1 Advantages and Disadvantages<br/>14.6.2 Various Chip-Embedding Processes<br/>14.6.3 Embedded Chip in SiP Rigid Substrate<br/>14.6.4 3D Embedded Chip in SiP Flexible Substrate<br/>14.6.5 3D Embedded Stacking Chips in SiP Flexible Substrate<br/>14.7 Summary and Recommendations<br/>14.8 References<br/>Index

Rubrieken

    Personen

      Trefwoorden

        3D IC Integration and Packaging