<H3>Chapter 1 - Introduction to Probability and Counting<H4>1.1 Interpreting Probabilities<H4>1.2 Sample Spaces and Events<H4>1.3 Permutations and Combinations<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 2 - Some Probability Laws<H4>2.1 Axioms of Probability<H4>2.2 Conditional Probability<H4>2.3 Independence and the Multiplication Rule<H4>2.4 Bayes' Theorem<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 3 - Discrete Distributions<H4>3.1 Random Variables<H4>3.2 Discrete Probablility Densities<H4>3.3 Expectation and Distribution Parameters<H4>3.4 Geometric Distribution and the Moment Generating Function<H4>3.5 Binomial Distribution<H4>3.6 Negative Binomial Distribution<H4>3.7 Hypergeometric Distribution<H4>3.8 Poisson Distribution<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 4 - Continuous Distributions<H4>4.1 Continuous Densities<H4>4.2 Expectation and Distribution Parameters<H4>4.3 Gamma, Exponential, and Chi-Squared Distributions<H4>4.4 Normal Distribution<H4>4.5 Normal Probability Rule and Chebyshev's Inequality<H4>4.6 Normal Approximation to the Binomial Distribution<H4>4.7 Weibull Distribution and Reliability<H4>4.8 Transformation of Variables<H4>4.9 Simulating a Continuous Distribution<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 5 - Joint Distributions<H4>5.1 Joint Densities and Independence<H4>5.2 Expectation and Covariance<H4>5.3 Correlation<H4>5.4 Conditional Densities and Regression<H4>5.5 Transformation of Variables<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 6 - Descriptive Statistics<H4>6.1 Random Sampling<H4>6.2 Picturing the Distribution<H4>6.3 Sample Statistics<H4>6.4 Boxplots<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 7 - Estimation<H4>7.1 Point Estimation<H4>7.2 The Method of Moments and Maximum Likelihood<H4>7.3 Functions of Random Variables--Distribution of X<H4>7.4 Interval Estimation and the Central Limit Theorem<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 8 - Inferences on the Mean and Variance of a Distribution<H4>8.1 Interval Estimation of Variability<H4>8.2 Estimating the Mean and the Student-t Distribution<H4>8.3 Hypothesis Testing<H4>8.4 Significance Testing<H4>8.5 Hypothesis and Significance Tests on the Mean<H4>8.6 Hypothesis Test on the Variance<H4>8.7 Alternative Nonparametric Methods<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 9 - Inferences on Proportions<H4>9.1 Estimating Proportions<H4>9.2 Testing Hypothesis on a Proportion<H4>9.3 Comparing Two Proportions Estimation<H4>9.4 Coparing Two Proportions: Hypothesis Testing<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 10 - Comparing Two Means and Two Variances<H4>10.1 Point Estimation: Independent Samples<H4>10.2 Comparing Variances: The F Distribution<H4>10.3 Comparing Means: Variances Equal (Pooled Test)<H4>10.4 Comparing Means: Variances Unequal<H4>10.5 Compairing Means: Paried Data<H4>10.6 Alternative Nonparametric Methods<H4>10.7 A Note on Technology<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 11 - Sample Linear Regression and Correlation<H4>11.1 Model and Parameter Estimation<H4>11.2 Properties of Least-Squares Estimators<H4>11.3 Confidence Interval Estimation and Hypothesis Testing<H4>11.4 Repeated Measurements and Lack of Fit<H4>11.5 Residual Analysis<H4>11.6 Correlation<H4>Chapter Summary<H4>Exercises<H4>Review Exercises<H3>Chapter 12 - Multiple Linear Regression Models<H4>12.1 Least-Squares Procedures for Model Fitting<H4>12.2 A Matrix Approach to Least Squares<H4>12.3 Properties of the Least-Squares Estimators<H4>12.4 Interval Estimation<H4>12.5 Testing Hypothesis about Model Parameters<H4>12.6 Use of Indicator or