1 Introduction<div><div>Role of Internal Combustion Engines</div><div>Developments in DI Diesel engines</div><div>Modelling of combustion in DI diesel engines</div><div>2 Phenomenology of diesel Combustion and modelling</div><div>Combustion Model</div><div>Emission models</div><div>Theme of the book</div><div>3 Experiments</div><div>Studies in a bomb</div><div>Real engine studies</div><div>4 Turbulent Structure of the Diesel Spray</div><div>Vaporising spray</div><div>Combusting sprays</div>Summary of the model for vapourising and combusting sprays</div><div>Modern view of the vaporising and burning spray</div><div>5 Ignition Delay in a Diesel Engine</div><div>Definition and Measurement of Ignition Delay</div><div>Classical model for Ignition Delay and its extension to other fuels</div><div>Phenomenological model of Ignition delay</div><div>6 Heat Transfer</div><div>7 Heat Release in Indirect Injection engines</div><div>Description of the Phenomenological model</div><div>Experimental technique</div><div>Results and discussions</div><div>8 Mixing correlations for smoke and fuel consumption of Direct Injection engines</div><div>Characteristic parameter for air fuel mixing in a cross flow</div><div>Validation of the mixing parameter</div><div>Conclusion</div><div>9 Heat Release in Direct Injection Engines</div><div>Heat Release Rate in Diesel Engines</div><div>Model for Mixing Controlled Combustion</div><div>Input rate and dissipation rate of turbulent kinetic energy of fuel spray</div><div>Modelling three Regimes of heat release rate</div><div>Steps to calculate Heat Release Rate using the new model</div><div>Experimental Validation</div><div>Heat Release Rate from the Experiments</div><div>Estimation of heat transfer across the walls</div><div>Results</div><div>10 Prediction of the Rate of Heat Release of Mixing-Controlled Combustion in a Common-Rail Engine with Pilot and Post Injections</div>Authors: Anirudh Jaipuria (Formerly with Ashok Leyland, Chennai), P A Lakshminarayanan (Adjunct Professor, IIT Kanpur)<div>Introduction</div><div>Description of the Model</div><div>MCC model</div><div>Modelling three regimes for a single injection</div><div>Refining the model in the second regime</div><div>Modelling the pilot and main injections</div><div>Modelling the post-injection</div><div>Experimental Validation</div><div>Characteristics of the common-rail injector</div><div>Experimental measurement of the ROHR and the effect of TDC determination</div><div>Results and Discussion</div><div>Discussion on the model constants</div><div>Summary</div><div>11 Hydrocarbons from D I Diesel Engines</div><div>HC model</div><div>Predicting HC in the exhaust</div><div>Discussions</div><div>12 Hydrocarbon Emissions from Spark Ignition Engines</div><div>Description of the Engine Model</div><div>Comparison of the model prediction with engine experiments</div><div>Conclusions</div><div>13 Smoke from DI Diesel engines</div><div>Phenomenon of soot formation</div><div>Application to engine conditions</div><div>14 Oxides of Nitrogen from Direct Injection Diesel Engines</div><div>Exhaust gas recirculation (EGR)</div><div>Phenomenology of Oxides of Nitrogen</div><div>15 Particulate Matter from Direct Injection Diesel engines</div><div>Introduction</div><div>Formation of Particulate Matter</div><div>Direct Measurement of PM</div><div>Components of Particulate Matter (PM)</div><div>Sulphur in Fuel</div><div>Oil</div><div>Hydrocarbon from Fuel and Lubricating Oil</div><div>Fuel</div><div>Carbon Soot</div><div>Measurement of Smoke</div><div>Filter Paper Method, Filter Smoke Number (FSN)</div><div>Opacity meter, Opacity %</div><div>Photo-acoustic sensing</div><div>Correlation of soot in PM, FSN, and Opacity</div><div>Calculation of Total Particulate Matter</div><div>PM Model</div><div>Validation of Correlation</div><div>Experimental Validation</div><div>Discussions</div><div>Resolution and Stability of New Generation Smoke meters</div><div>The sensitivity of Smoke meters</div>Cost-effective solution for development<div>Reliability</div><div>Measurement noise</div><div>Fit</div><div>Conclusions</div><div>References<br></div><div>Definitions/Abbreviations</div><div>16 Multi-dimensional modelling of diesel combustion: Review</div><div>Authors: Yu Shi, Rolf Reitz (University of Wisconsin)</div><div>Basic approach</div><div>Turbulence modelling</div><div>Spray and evaporation modelling</div><div>Combustion modelling</div><div>Pollutant emissions modelling</div><div>Heat transfer modelling</div>Efficient multi-dimensional simulation of diesel engine combustion with detailed chemistry<div>CFD codes for engine simulation</div><div>Future and challenge</div><div>17 Multi-dimensional modelling of diesel combustion: Applications</div><div>Authors: Yu Shi, Rolf Reitz (University of Wisconsin)</div><div>Case studies</div><div>18 Large Eddy Simulation and Prediction of Heat Release, NOx and Soot in diesel and gasoline DI engines (Author: Dr Haiwen Ge) </div><div>Introduction</div><div>Why LES? </div><div>How does LES compare with RANS and LES?</div><div>Formulations of the LES models: equations</div><div>Specific turbulent combustion model and spray models for LES</div><div>Examples</div>Examples from literature<div>Model validations</div><div>Industrial applications</div><div>Computational costs</div><div>Future and challenges</div><div>Appendices</div><div>I Estimation of products of combustion from the interferogram</div><div>II Estimation of concentration of fuel vapour in the vapourising and combusting spray from the interferogram</div><div>III Estimation of Mass and Heat transfer functions</div><div>IV Vapour pressure of diesel and fuels A & B and B*</div><div>V Calculation of tangential velocity of air in the piston cavity from the inlet swirl number</div><div>VI Momentum of useful air of the three different combustion cavities described in Kuo et al (1988)</div><div>VII Momentum of useful air for engines A8, B8, C8 and D8</div><div>VIII Estimation of spray properties and impingement parameters</div><div>IX Calculation of fuel injection rate</div><div>X Influence of nozzle features</div><div>XI Henry’s Constant Hc for Fuel (n-Octane) in Oil</div><div>XII Evaluation of gF* and gG*</div><div>XIII In-Cylinder Oxidation of HC</div><div>XIV Estimation of Wall Surface Temperature</div><div>XV Experimental Data on HC emissions from DI Diesel Engines</div><div>XVI Engines list for validating PM model, aspiration, Power, smoke, and PM</div><div><br></div>