Wearable Antennas and Body Centric Communication
Present and Future
Samenvatting
This book presents state-of-the-art technologies, trends and applications with a focus on the healthcare domain for ultra-wideband (3.1–10.6 GHz) and 60 GHz (57–66 GHz) wireless communication systems. Due to various key features such as miniaturized antenna design, low power, high data rate, less effects on the human body, relatively less crowded spectrum, these technologies are becoming popular in various fields of biomedical applications and day-to-day life. The book highlights various aspects of these technologies related to body-centric communication, including antenna design requirements, channel modeling and characterization for WBANs, current fabrication and antenna design strategies for textile, flexible and implanted antennas. Apart from the general requirements and study related to these frequency bands, various application specific topics such as localization and tracking, physical activity recognition and assessment, vital sign monitoring and medical imaging are covered in detail. The book concludes with the glimpses of future aspects of the UWB and 60 GHz technology which includes IoT for healthcare and smart living, novel antenna materials and application of machine learning algorithms for overall performance enhancement.
Specificaties
Inhoudsopgave
<p> 1.1 Wireless Body Centric Communication</p>
<p> 1.2 The Wireless Body Area Network </p>
1.3 History of Wireless Personal Area and Local Area Networks<p></p>
<p>1.4 State of the Art Technologies</p>
<p> 1.4.1 ISM Band 2.4 GHz</p>
1.4.2 UWB 3-10 GHz<p></p>
<p> 1.4.3 0.3-10 THz</p>
<p>1.5 Applications</p>
<p>1.6 Scope of the Book </p>
<p>References</p>
<p> </p>
<p>2. On-Body Radio Wave Propagation</p>
<p> </p>
<p> 2.1 Introduction</p>
<p> 2.2 Wearable Antenna Requirements</p>
<p> 2.2.1 Design Strategy and Fabrication Methodologies</p>
<p> 2.2.2 Simulation Based Approach- Performance Analysis</p>
2.2.3 Anechoic Environment Measurements<p></p>
<p> 2.2.4 Indoor Environment Measurements </p>
<p> 2.3 Wearable Antenna Radiation Pattern Variation</p>
<p> 2.3.1 Influence of Antenna Location on the Body</p>
<p> 2.3.2 Effect of Different Postures and Limb Movements</p>
<p> 2.4 Channel Modeling</p>
<p> 2.5 Statistical On-Body Measurement Results</p>
2.5.1 UWB 3-10 GHz<p></p>
<p> 2.5.2 mmWave 60 GHz</p>
<p> 2.6 Dynamic On-Body Communication Channels</p>
<p> 2.7 Applications</p>
<p> 2.6 Conclusion</p>
<p> References</p>
<p> </p>
<p>3. Indoor OFF-Body and Body-to-Body Communication-UWB and mmWave Technologies </p>
3.1 Introduction<p></p>
<p> 3.2 The Indoor Propagation Environment </p>
<p> 3.3 Indoor Environment Influence on Body-Centric Channels</p>
<p> 3.3.1 Anechoic Chamber</p>
<p> 3.3.2 Indoor Environment</p>
<p> 3.4 Wearable Communication Channel Links</p>
<p> 3.4.1 Potential Placement of Wearable Links</p>
<p> 3.4.2 mmWave- 60GHz </p>
<p> 3.5 Channel Characterization And Modeling </p>
<p> 3.5.1 UWB 3-10 GHz</p>
<p> 3.5.1.1 Large Scale Fading</p>
<p> 3.5.1.2 Small Scale Fading</p>
<p> 3.5.2 mmWave-60GHz</p>
<p> 3.5.2.1 Large Scale Fading</p>
<p> 3.5.2.2 Small Scale Fading</p> 3.6 Conclusion <p></p>
<p> References</p>
<p> </p>
<p>4. Flexible Wearable Technologies-Design and Fabrication</p>
<p> 4.1 Introduction</p>
<p> 4.2 Flexible Materials for Wearable Antennas</p>
4.2.1 Textile Antennas<p></p>
<p> 4.2.2 Paper and Kapton Based Antennas</p>
<p> 4.2.3 Novel materials for Textile Antennas</p>
<p> 4.3 Fabrication Techniques and Procedures</p>
<p> 4.4 Antenna Design Strategies and Performance Evaluation</p>
<p> 4.4.1 Antenna Design Requirements</p>
<p> 4.4.2 Simulation Based Study and Analysis</p>
4.4.3 Flexible Antenna Performance-Experimental Approach<p></p>
<p> 4.5 Characterization and Body-Centric Measurements </p>
<p> 4.5.1 Performance on Human Body</p>
<p> 4.5.2 Deformation Effects</p>
<p> 4.5.3 Specific Absorption Rate (SAR)</p>
<p> 4.6 Current and Future Applications</p>
<p> 4.7 Conclusion</p>
References<p></p>
<p> </p>
<p>5. Implantable Antennas for WBAN’s</p>
<p> 5.1 Introduction</p>
5.2 Numerical Modelling<p></p>
<p> 5.2.1 Numerical Tissue Phantom</p>
5.2.1.1 Modelling of the Human Body<p></p>
<p> 5.2.1.2 EM Wave Propagation Aspects</p>
<p> 5.2.2 Simulation Scenarios</p>
5.2.3 Frequency Bands<p></p>
<p> 5.2.3.1 3-10 GHz UWB</p>
<p> 5.2.3.2 mmWave 60GHz</p>
<p> 5.3 Antenna Structures and Performance</p>
<p> 5.3.1 Design Aspects</p>
5.3.2 Fabrication Procedures<p></p>
<p> 5.3.3 Performance Analysis</p>
<p> 5.4 Channel Modelling and Communication Link Analysis </p>
<p>5.4.1 In Vitro Measurements</p>
<p>5.4.2 In Vivo Measurements</p>
<p> 5.5 Biocompatibility Issues and Safety Considerations</p>
<p> 5.6 Conclusion</p>
<p> References</p>
<p></p>
<p>6. Indoor Localization and Tracking </p>
<p> 6.1 Introduction</p>
6.2 Algorithms and Techniques<p></p>
<p> 6.2.1 Experimental Set-up</p>
<p> 6.2.2 Channel Parameter Based Localization Algorithm</p>
<p> 6.3 Human Body Localization</p>
<p> 6.3.1 TDOA/TOA Data Fusion Algorithm</p>
<p> 6.3.2 RSS-Based Location Estimation Approach</p>
<p> 6.3.2 Angle of Arrival and DOA Techniques</p>
6.4 Base Station Configurations<p></p>
<p> 6.4.1 GDOP Analysis</p>
<p> 6.4.2 Influence of Base Station Configuration and Localization Accuracy</p>
<p> 6.5 Channel Classification and Analysis-Experimental Investigations</p>
<p> 6.5.1 Path Loss Analysis</p>
<p> 6.5.2 RMS Delay Spread</p>
<p> 6.5.3 Multipath Components Estimation</p>
6.6 Localization Accuracy Analysis<p></p>
<p> 6.7 Comparison with Optical Based Motion Capture System</p>
<p> 6.8 Human Subject Detection in Indoor Environments</p>
<p> 6.9 Conclusion</p>
<p> References </p>
<p>7. Monitoring and Assessment of Physical Activities</p>
<p> 7.1 Introduction</p>
<p> 7.2 Importance of Activity Monitoring in Healthcare Domain</p>
<p> 7.3 Current Trends and Technologies</p>
<p>7.3.1 ISM Band 2.4 GHz</p>
<p>7.3.2 UWB and mmWave Bands</p>
<p>7.3.3 Sensor Based Activity Monitoring</p>
<p> 7.4 Methodology</p>
<p>7.4.1 Measurement Set up</p>
<p>7.4.2 Algorithm for Activity Assessment </p>
<p> 7.5 Activity Recognition and Monitoring</p>
<p> 7.5.1 Upper Limb Activities</p>
<p> 7.5.2 Lower Limb Activities</p>
<p> 7.6 Activity Monitoring Accuracy</p>
<p>7.6.1 Accuracy in Monitoring Process</p>
7.6.2 Influence of Channel Link Type on Estimated Accuracy<p></p>
<p>7.6.3 Precision and Complexity Analysis</p>
7.7 Daily Activity Monitoring<p></p>
<p> 7.8 Conclusion </p>
<p> References </p>
<p>8. Wearable Antennas for Vital Sign Monitoring </p>
<p> 8.1 Introduction</p>
<p> 8.2 Non-invasive Methods for Vital Sign Monitoring</p>
<p>8.2.1 Antenna Types and Design Strategies</p>
<p>8.2.2 Non-contact UWB and mmWave Systems </p>
<p>8.2.3 Techniques and System Requirements</p>
<p> 8.2.3.1 IR-UWB Radar</p>
<p> 8.2.3.2 mmWave System</p>
<p> 8.3 Breath Activity Monitoring </p>
<p> 8.4 Heart Beat Monitoring </p>
<p> 8.5 Accuracy and Performance Evaluation of Vital Sign Monitoring</p>
<p> 8.6 Conclusion </p>
<p> References </p>
<p>9. UWB and mmWave Technologies for Medical Imaging Applications</p>
<p> 9.1 Introduction </p>
<p> 9.2 Imaging Principal and Techniques</p>
<p>9.2.1 Synthetic Aperture Radar (SAR) Imaging</p>
<p>9.2.2 Through-Wall Radar Imaging </p>
<p>9.3 Antenna Design Considerations</p>
<p> 9.4 Methods of Phantom Preparation</p>
<p> 9.5 Medical Imaging for Breast Cancer Detection</p>
<p> 9.6 Image Processing and Reconstruction Algorithms</p>
<p> 9.7 Conclusion </p>
<p> References </p>
<p> </p>
<p>10. Future Aspects</p>
<p> 10.1 IOT for Smart Living and Healthcare</p>
<p>10.1.1 Smart Solutions for Remote Monitoring</p>
<p>10.1.2 Telehealth and Telesurgery</p>
<p>10.1.3 Emergency Notification System </p>
<p> 10.2 Advance Materials for Wearable Antenna Design</p>
<p>10.2.1 Graphene and Nano-particle Based Antennas</p>
<p>10.2.2 3D Printing Based Antennas</p>
<p>10.2.3 Novel Electro-Textile and Materials</p>
<p>10.2.4 Meta-materials and Electromagnetic Band Gap (EBG) Structures</p>
<p>10.2.5 Implantable and Epidermal Antennas</p>
<p> 10.3 Machine Learning for Improved Well-Being </p>
<p> 10.3.1 Classification Algorithms</p>
<p>10.3.2 Diagnostics and Prevention</p>
<p>10.3.3 Assessment and Prediction</p>
<p>10.3.4 Accuracy Enhancement</p>
<p>10.3.5 Applications</p>
<p> 10.4 Miniaturization and Performance Enhancement of Wearable Antenna </p>
<p>References</p>
Index