, ,

Dynamics of Rigid-Flexible Robots and Multibody Systems

Specificaties
Gebonden, blz. | Engels
Springer Nature Singapore | e druk, 2021
ISBN13: 9789811627972
Rubricering
Springer Nature Singapore e druk, 2021 9789811627972
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book discusses the dynamic analysis of rigid-flexible robots and multibody systems with serial as well as closed-loop architecture. The book presents a formulation of dynamic model of rigid-flexible robots based on the unique approach of de-coupling of natural orthogonal complements of velocity constraints. Based on this formulation, a computationally efficient and numerically stable forward dynamics algorithms for serial-chain and closed-loop robotic systems with rigid or flexible or rigid-flexible links is presented. The proposed algorithm is shown to be a numerically efficient for forward dynamics based on the investigation methodologies built on eigen value analytics. Precision and functionality of the simulation algorithms is presented/illustrated with application on different serial and closed-loop systems (both planar and spatial types). Some of the major robotic arms used to illustrate the proposed dynamic formulation and simulation algorithms are PUMA robot, Stanford robot arm, and Canadarm. It is envisaged that the book will be useful for researchers working on the development of rigid-flexible robots for use in defense, space, atomic energy, ocean exploration, and the manufacturing of biomedical equipment.

Specificaties

ISBN13:9789811627972
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer Nature Singapore

Inhoudsopgave

<br> <p>1.&nbsp;&nbsp;&nbsp;&nbsp; Introduction</p>

<p>1.1.&nbsp; Dynamic Modeling of Rigid and Flexible Systems</p>

<p>1.2.&nbsp; Computational Efficiency</p>

<p>1.3.&nbsp; Summary</p>

<p>2.&nbsp;&nbsp;&nbsp;&nbsp; Dynamics of serial-chain system</p>

<p>2.1.&nbsp; Equations of motion</p>

<p>2.2.&nbsp; Geometric stiffness</p>

<p>2.3.&nbsp; Shape functions</p>

<p>2.4.&nbsp; Illustrations</p>

<p>2.4.1.&nbsp;&nbsp;&nbsp;&nbsp; Spinning cantilever beam</p>

<p>2.4.2.&nbsp;&nbsp;&nbsp;&nbsp; 2-link manipulator</p>

<p>2.4.3.&nbsp;&nbsp;&nbsp;&nbsp; 3-link manipulator</p>

<p>2.4.4.&nbsp;&nbsp;&nbsp;&nbsp; PUMA/Stanford Arm</p>

<p>2.5.&nbsp; Summary</p>

<p>3.&nbsp;&nbsp;&nbsp;&nbsp; Dynamics of closed-loop systems</p>

<p>3.1.&nbsp; Formulation</p>

<p>3.1.1.&nbsp;&nbsp;&nbsp;&nbsp; Forward dynamics</p>

<p>3.1.2.&nbsp;&nbsp;&nbsp;&nbsp; Inverse dynamics</p>

<p>3.2.&nbsp; Illustrations </p>

<p>3.2.1.&nbsp;&nbsp;&nbsp;&nbsp; 4-bar mechanism</p>

<p>3.2.2.&nbsp;&nbsp;&nbsp;&nbsp; 5-bar mechanism</p>

<p>3.2.3.&nbsp;&nbsp;&nbsp;&nbsp; 3RRR parallel manipulator</p>

<p>3.3.&nbsp; Forced simulation</p>

<p>3.4.&nbsp; Summary</p>

<p>4.&nbsp;&nbsp;&nbsp;&nbsp; Dynamics of spatial 4-bar mechanism</p>

<p>4.1.&nbsp; Formulation</p>

<p>4.2.&nbsp; Illustration</p>

<p>4.3.&nbsp; Summary</p>

<p>5.&nbsp;&nbsp;&nbsp;&nbsp; Computational efficiency and numerical stability</p>

<p>5.1.&nbsp; &nbsp;Criteria for numerical stability</p>

<p>5.2.&nbsp; &nbsp;Stability and efficiency for rigid robot</p>

<p>5.3.&nbsp; &nbsp;Stability and Efficiency for Rigid-Flexible Robots</p>

<p>5.4.&nbsp; Summary</p>

<p>6.&nbsp;&nbsp;&nbsp;&nbsp; Experimental Results</p>

<p>6.1.&nbsp; Damping in Dynamic Model</p>

6.2.&nbsp; Damping Coefficients <p></p>

<p>6.2.1.&nbsp;&nbsp;&nbsp;&nbsp; Joint Damping </p>

<p>6.2.2.&nbsp;&nbsp;&nbsp;&nbsp; Structural Damping</p>

<p>6.3.&nbsp; An Illustration: A Single Flexible Link</p>

<p>6.4.&nbsp; Single Flexible-Link Arm</p>

<p>6.4.1.&nbsp;&nbsp;&nbsp;&nbsp; Calibration of the Strain-Gauge Circuit</p>

<p>6.4.2.&nbsp;&nbsp;&nbsp;&nbsp; Free-Fall</p>

6.4.3.&nbsp;&nbsp;&nbsp;&nbsp; Forced Response<p></p>

<p>6.5.&nbsp; A Two Flexible-Link Robotic Arm</p>

<p>6.6.&nbsp; Summary</p>

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        Dynamics of Rigid-Flexible Robots and Multibody Systems