I: Structure of Transposable Element. LTR retrotransposons and the evolution of eukaryotic enhancers; J.F. McDonald, et al. What makes Grande 1 retrotransposon different? J.-A. Martinez-Izquerdo, et al. About the origin of retroviruses and the co-evolution of the gypsy retrovirus with the Drosophila flamenco hose gene; A. Pélisson, et al. Structural analysis of Drosophila subobscura gypsy elements (gypsyDs); T.M. Alberola, et al. Evolution of R1 and R2 in the rDNA units of the genus Drosophila; T.H. Eickbush, et al. Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? P. Capy, et al. II: Transposable Elements and Heterochromatin. Evolutionary links between telomeres and transposable elements; M.L. Pardue, et al. Constitutive heterochromatin and transposable elements in Drosophila melanogaster; P. Dimitri. P element regulation and X-chromosome subtelomeric heterochromatin in Drosophila melanogaster; S. Ronsseray, et al. III: Transposable Elements and Host Phylogenies. Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution; J.M. Casacuberta, et al. Genetic and molecular investigations on the endogenous mobile elements of non-drosophilid fruitflies; C. Torti, et al. Genomic distribution of the retrovirus-like element ZAM in Drosophila; E. Bladrich, et al. CM-gag, a transposable-like element reiterated in the genome of Culex pipiens mosquitoes contains only a gag gene; N. Benssadi-Merchermek, et al. IV: Dynamics and Regulation of Transposable Elements.A. Transposable Elements in Natural Populations and Laboratory Strains. Evidence for a role of the host in regulating the activity of transposable elements in Drosophila melanogaster: the case of the persistent instability of Bari1 elements in Charolles stock; C. Di Franco, et al. Plant S1 SINEs as model to study retroposition; N. Gilbert, et al. Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans; C. Biémont, et al. Accumulation of transposable elements in laboratory lines of Drosophila melanogaster; S.V. Nuzhdin, et al. B. Relationships Between TEs and Host Genomes. Regulation of the transposable element mariner; D.L. Hartl, et al. The evolution of Ty1-copia group retrotransposons in eukaryote genomes; A.J. Flavell, et al. The chromosomal distribution of retrotransposons-like elements in higher plants and its implications for genome evolution; J.S.(P.) Heslop-Harrison, et al. The Ty1-copia retrotransposons in plants: genomic organisation, evolution and use as molecular markers; A. Kumar, et al. BARE-1 insertion site preferences and evolutionary conservation of RNA and cDNA processing sites; A. Suoniemi, et al. Bare-ID, a representative of a family of Bare-like elements of barley genome; A.B. Shcherban, A.V. Vershinin. The expression of the tobacco Tnt1 retrotransposon is linked to the plant defense response; M.A. Grandbastien, et al. Fungal transposable elements and genome evolution; M.J. Daboussi. Molecular domestication of mobile elements; W.J. Miller, et al. Genomic signatures: tracing the origin of retroelements at the nucleotide level; C. Terzian, et al.