1. Introductory and Historical.- 1.1. Introduction: Pytheas, Bacon, Newton and Laplace.- 1.2. The Barometric and Other Daily Variations.- 1.2A. True or Apparent Time, and Mean Time.- 1.2B. The Harmonic Dial.- 1.3. Thermal Tides and Kelvin’s Resonance Theory.- 1.4. More Realistic Atmospheric Models.- 1.5. The Phase of S2 (p).- 1.6. Doubts as to the Resonance Theory.- 1.7. Renewed Hope in the Resonance Theory.- 1.8. Atmospheric Oscillations as Studied by Weekes and Wilkes.- 1.9. Rockets Exclude Resonance.- 1.10. Ozone Absorption of Radiation the Main Cause of S2(p).- 1.11. Upper Air Data.- 1.12. Theoretical Calculations of the Diurnal Thermal Tide.- 1.13. Other Features of Atmospheric Oscillations.- 2S. The Solar Daily Atmospheric Oscillations As Revealed By Meteorological Data.- 2S.1. The Material Studied; Ground Level Data.- 2S.2. Harmonic Analysis of S; The Non-Cyclic Variation.- 2S.3. The Seasonal Variation of S.- 2S.3A. Daily Seasonal Integers ? (Sigma) or SN (Bartels, 1954).- 2S.4. The World-Wide Distribution of S, Particularly of S(p).- 2S.4A. S2(p).- 2S.4A.1. Types of Associated Legendre Functions.- 2S.4A.2. The Spherical Harmonic Expression of S2(p).- 2S.4B. S1(p).- 2S.4C. S3(p).- 2S.4D. S4(p).- 2S.5. The Daily Variation of Air Temperature T.- 2S.6. The Daily Wind Variation S(V).- 2S.7. Atmospheric Daily Changes above Ground Level.- 2S.7A. Daily Variations between the Ground and 30 km.- 2S.7B. Daily Variations from 30 km-60 km.- 2S.7C. Daily Variations from 80-120 km.- 2S.7D. Daily Variations in the Thermosphere.- 2S.7E. Analysis of Data Covering Only a Fraction of a Day.- 2L. The Lunar Atmospheric Tide As Revealed By Meteorological Data.- 2L.1. Introduction.- 2L.2. The Tropical Lunar Air Tide.- 2L.3. The Lunar Air Tide Outside the Tropics.- 2L.4. The Month and the Lunar Day.- 2L.4A. The Main Harmonic Components of the Lunar Tidal Potential.- 2L.5. Methods of Computation of L from Observed Data; Early Methods Based on Apparent Lunar Time.- 2L.6. The Chapman-Miller (or C-M) Method for Meteorological Variables.- 2L.6A. Use of the Integers Mu (or ?) instead of the Integers Nu or Nu? (or v?).- 2L.6B. The Components Sp.- 2L.7. Vector Probable Errors.- 2L.8. The Determination of L2 from Only a Few Meteorological Readings per Day.- 2L.9. The Lunar Semidiurnal Barometric Tide L2 (p).- 2L.10. The Expression of L2 (p) in Spherical Harmonic Functions.- 2L. 11. The Asymmetry of L2 (p) Relative to the Equator, and its Seasonal Variation.- 2L.12. Comparison of L2(p) and S2(p).- 2L.13. The Lunar Tidal Wind Variation.- 2L.14. The Lunar Tidal Variation of Air Temperature.- 2L.15. The Lunar Tidal Changes of Height of Various Pressure Levels.- 2L.16. Brief Mention of the Lunar Geomagnetic Tide.- 3. Quantitative Theory Of Atmospheric Tides And Thermal Tides.- 3.1. Introduction.- 3.2. Equations.- 3.3. Methods of Solution.- 3.3A. Laplace’s Tidal Equation.- 3.3B. Vertical Structure Equation.- 3.3C. Outline of Overall Procedure.- 3.4. Sources of Excitation.- 3.4A. Gravitational Excitation.- 3.4B. Thermal Excitation Due to Exchange of Heat with the Ground.- 3.4C. Thermal Excitation Due to Direct Atmospheric Absorption of Insolation.- 3.4D. Summary.- 3.5. Explicit Solutions.- 3.5A. The Migrating Solar Semidiurnal Thermal Tide.- 3.5B. The Solar Diurnal Thermal Tide.- 3.5C. The Lunar Semidiurnal Tide.- 3.5D. Other Components.- 3.6. Shortcomings of Present Calculations.- 3.6A. Surface Topography.- 3.6B. Dissipation.- 3.6B.1. Infrared Cooling.- 3.6B.2. Molecular Viscosity and Conductivity.- 3.6B.3. Ion Drag and Thermal Tides in the Ionosphere.- 3.6C. Non-Linear Effects.- 3.6D. Neglect of Mean Winds and Horizontal Temperature Gradients.- 3.6E. Additional Remarks.- 3.7. Comparison of Theory with Data.- List of Symbols for Chapter 3.- Guide To The Figures And Tables.- References.- Index Of Names.- Index Of Subjects.- Index Of Places.