I: History, Morphology and Evolution.- A Historical Review.- II: Distribution of Planetary Nebulae in the Galaxy.- A. Methods of discovering planetary nebulae.- B. Distribution in galactic coordinates.- B.1. Galactic longitude distribution.- B.2. Galactic latitude distribution.- C. Radial velocities of the nebulae.- D. Extragalactic planetary nebulae.- D.1. Discovery of extragalactic planetary nebulae.- D.2. Distribution of extragalactic planetary nebulae.- D.3. Luminosity function of planetary nebulae.- III: Interpretation of Emission Lines and Nebular Abundances.- A. Recombination lines.- A.1. Hydrogen line formation in the low density limit.- A.2. Hydrogen line formation at finite densities.- A.3. Ionization by diffuse Lyman continuum photons.- A.4. Self-absorption in the hydrogen spectrum.- A.5. Helium.- B. Collisionally excited lines.- C. Line formation in heavier elements by other processes.- C.1. Dielectronic recombination.- C.2. Other recombination processes.- C.3. OIII Bowen resonance-fluorescence.- D. Nebular models.- E. Abundances in planetary nebulae.- E.1. Helium.- E.2. Oxygen.- E.3. Nitrogen.- E.4. Carbon.- E.5. Neon, Argon and Sulfur.- E.6. Abundance variations with galactic latitude.- E.7. Variation of nebular abundance with position in the nebula.- IV: Nebular Continuum Emission.- A.Sources of continuum emission.- A.1. Hydrogen free-bound and free-free emission.- A.2. Helium continuum emission.- A.3. Hydrogen two-quantum emission.- A.4. Helium two-quantum emission.- B. Comparison of theory with observations.- C. Separation of continuum radiation from the nebula and the exciting star.- C.1. The visual continuum.- C.2. The ultraviolet continuum.- D. Radio continuum radiation.- D.1. Constant density nebula.- D.2. Nebulae with varying density.- E. Comparison of radio continuum with hydrogen line emission.- V: Distance to the Nebulae.- A. Extinction.- B. Distances to individual nebulae.- C. Mass of the nebula.- C.1. Nearby nebulae.- C.2. Galactic center nebulae.- C.3. Discussion of the nebular mass variation.- D. Statistical methods for determining distances.- D.1. ‘Shklovskii’ method.- D.2. Modified ‘Shklovskii’ method.- D.3. Proper motions.- E. Absolute nebular flux.- F. The space density of nearby nebulae and their distribution with height above the galactic plane.- VI: Morphology, Expansion and Mass Loss.- A. Morphology: measurements.- B. Nebular expansion.- C. Morphology: models and classification.- D. Morphology: ‘halo’ structures.- E. Morphology: four individual cases.- F. Mass loss from the central star: ultraviolet lines.- G. Other evidence for mass loss: visual lines.- VII: The Temperature of the Central Stars.- A. The line spectra.- B. The continuous spectrum of the central star.- C. Model atmospheres.- D. ‘Zanstra’ temperatures.- D.1. The Zanstra hydrogen temperature.- D.2. The Zanstra ionized helium temperature.- D.3. Discussion of nebulae consisting of hydrogen and helium.- D.4. Resultant temperatures and discussion.- E. ‘Stoy’ temperatures.- F. Temperatures derived from nebular ionization equilibrium.- VIII: Infrared and Millimeter Radiation.- A. Infrared continuous emission.- B. Interpretation as dust emission.- C. Energy input to the dust.- D. Consequences for the central star temperature determination.- E. Broad and narrow infrared emission features.- F. Molecular hydrogen.- G. Carbon monoxide emission.- IX: Evolution of the Central Star.- A. Observational evidence.- A.1. The H-R diagram.- A.2. White dwarfs.- B. Theoretical models.- B.1. Review of the early evolution.- B.2. Uncertainty in early evolution.- B.3. Enrichment of helium, nitrogen and carbon.- B.4. Evolution after nebular formation.- C. Comparison of theory and observation.- C.1. The H-R diagram and central star mass.- C.2. The ages of the nebulae and the position of the star on the H-R diagram.- C.3. Changes in chemical composition in the atmosphere.- X: Evolution from Red Giant to Planetary Nebula.- A. The cool giants.- B. The Mira variables.- B.1. Light curves, periods, absolute magnitudes and mass loss.- B.2. Spatial distribution, kinematics and local space density of Miras.- B.3. Mass loss.- B.4. Mass of Mira variables and pulsation theory.- C. The OH/IR masers.- C.1. OH maser emission.- C.2. Observed OH emission.- C.3. Detection and kinematics of OH/IR maser sources.- C.4. The birthrate of OH/IR stars.- C.5. The missing link?.- D. Protoplanetary nebulae and symbiotic stars.- D.1. V 1016 Cygni and HM Sge.- D.2. CRL 618.- D.3. CW Leo.- D.4. Far infrared radiation from protoplanetary nebulae.- E. FG Sge and its nebula.- F. Discussion of the evolution.- XI: Influence of Planetary Nebulae on the Interstellar Medium.- A. The mass input.- B. The dust input.- C. Kinetic energy input.- D. Element abundance changes.- E. The far-ultraviolet radiation field.- E.1. Absorption of radiation in the interstellar medium.- E.2. Radiation of optically thin planetary nebulae and hot white dwarfs.- E.3. Comparison with O stars.- Appendix I: Positions and other Information of the Brightest Planetary Nebulae and Their Central Stars.- Appendix II: Infrared Continuum Flux from Planetary Nebulae.- Author Index.- Index of Individual Objects.