The Solar-Terrestrial System.- Solar System Magnetohydrodynamics: Concepts and Basic Equations.- Solar System Magnetohydrodynamics.- I. The Macroscopic Equations of Plasma.- From Particles to Fluids.- Phase Space Density.- The Continuity Equation in Phase Space.- The Boltzmann Equation.- Liouville’s Theorem.- Forming the Macroscopic Variables.- Derivation of the Macroscopic Equations.- The Field Equations.- The Conservation Equations.- Inclusion of Neutral Particle Interactions.- The Prognostic Equation for Scalar Pressure.- Temperature and Related Concepts.- Return to the Prognostic Equation for Scalar Pressure.- Adiabatic, Isentropic, and Polytropic Flows.- The Bernoulli Equation.- Divergence of the Anisotropic Pressure Tensor.- Single Particle Drifts and the Euler Equation.- Limitations to the Use of the Macroscopic Equations.- II. The Hydromagnetic Approximation and Its Consequences.- The Generalized Ohm’s Law.- Charge Neutrality and Related Approximations.- Poynting’s Theorem in the Hydromagnetic Limit.- Equipotential Fieldlines and Streamlines in Steady-State Hydromagnetic Flows.- Freezing Laws.- Thawing of Magnetic Flux.- The Generalized Vorticity Theorem.- The MHD Helmholtz Equation.- The Double Adiabatic Invariants.- III. MHD Waves and Discontinuities.- Linearized Plane Waves in an Isotropic Magnetized Plasma.- MHD Discontinuities.- Shock Waves 1: Ordinary (non-MHD) Shock Waves.- Shock Waves 2: Parallel Shocks.- Shock Waves 3: Perpendicular Shocks.- Shock Waves 4: Oblique Intermediate Mode Shocks.- Shock Waves 5: Oblique Fast and Slow Mode Shocks.- IV. MHD Instabilities.- The Firehose and Mirror Instabilities.- The Kelvin-Helmholtz Instability.- The Magnetospheric Interchange Instability.- Solar and Interplanetary Physics.- Generation of Solar Magnetic Fields.- Theories of Magnetic Field Origins.- Induction Equations.- Short-Sudden Approximation.- Cyclonic Convection.- Induction in the Earth.- Other Dynamo Effects.- Magnetic Field of the Sun.- Heating Of the Outer Solar Atmosphere.- The Solar Magnetic Field.- Heating of the Corona.- Model for Magnetic Merging.- Idealized Problem.- Application to the Sun.- Alternative Mechanisms.- Conclusion.- Hydromagnetic Waves in the Interplanetary Medium.- Equations of Magnetohydrodynamics.- An Exact Solution — Alfvenic Fluctuations.- Classification of Wave Modes — Simple Waves.- Geometrical Hydromagnetics.- Alfven Wave Pressure.- Hydromagnetic Turbulence in the Interplanetary Medium.- Some Comments on the Theory of Fluid Turbulence.- Rugged Invariants of Hydromagnetic Turbulence.- Observed Alfvenic Fluctuations — Waves or Turbulence?.- Collisionless Processes in the Interplanetary Medium.- General Remarks on the Collisionless Kinetic Theory.- Evolution of Velocity Distributions in Solar Wind Flow.- Collisionless Waves, Damping, and Instability.- Solar Cosmic Rays — Their Injection, Acceleration, and Propagation.- Solar Flare Observations.- The Injection.- The Acceleration.- The Propagation.- Solar Modulation of Galactic Cosmic Rays.- Solar-Cycle Variations.- The Basic Idea.- The Modulation Equations.- Energy Loss.- Solving the Modulation Equations.- Some Illustrative Examples.- The Acceleration of Energetic Particles in the Solar Wind.- Statistical Acceleration.- Shock Acceleration.- The Anomalous Component.- Magnetospheric Physics.- Large-Scale Morphology of the Magnetosphere.- Magnetic Field Structures.- Plasma Structures.- Low-Altitude Structures.- Magnetic Field Line Merging: Basic Concepts.- Solar-Wind Magnetosphere Coupling.- I. The Solar Wind — An Anisotropic Fluid.- II. Magnetospheric Convection.- Frozen-in-Flux.- The Axford-Hines Model.- The Dungey Model.- Open vs. Closed.- Birkeland Currents.- Substorms.- III. Magnetic Coupling.- The Requirement for Magnetic Merging.- Energy Flow in the Open Model.- Momentum Transfer in the Open Model.- Geometry.- IV. Non-Magnetic Coupling.- Wave Transfer.- Particle Transfer.- Diffusion.- V. The Tail.- Appendix A — The Requirement for Return Flow.- Appendix b — mean-square displacement in cross-field Diffusion.- The Quasi-Static (Slow-Flow) Region of the Magnetosphere.- I. Introduction.- II. Qualitative Overview.- Plasma Regions.- Electric Currents.- Dynamics of the Inner Magnetosphere.- III. Adiabatic Invariants and Adiabatic Drifts.- Adiabatic Invariants.- Bounce-Averaged Drifts.- IV. Ionosphere-Magnetosphere Coupling.- Pressure/Birkeland-Current Relation (from Drift Theory).- Pressure/Birkeland-Current Relation from MHD.- Ionospheric Conductivity.- A Fundamental Equation of Ionosphere-Magnetosphere Coupling.- V. Calculations of Convection in the Inner Magnetosphere.- Vasyliunas1 Logical Loop.- Simple Analytic Model.- VI. Computer Model of Inner Magnetospheric Convection.- Introductory Comments.- Input to the Computer Models.- Computer Models-Selected Results.- VII. Particle Loss and Magnetic Field Models.- Loss of Particles from Magnetospheric Flux Tubes.- Magnetic Field Models.- Combined Convection and Magnetic-Field Models.- Global MHD Model of the Earth’s Magnetosphere.- Global MHD Model.- Numerical Methods.- Results:.- 1. Shape of the Magnetosphere.- 2. Plasma Flow Patterns in the Magnetosphere.- Origins and Consequences of Parallel Electric Fields.- I. Introduction.- II. Origins of E.- Anomalous Resistivity.- Thermoelectric Effect.- Quasi-neutral Potentials.- Double Layers.- III. Consequences of em.- Field-Aligned Currents.- Magnetospheric Models.- Electrostatic Ion Acoustic Waves.- I. Introduction.- II. Linear properties.- Electrostatic, Collisionless Ion Acoustic Wave.- Effect of an Ambient Magnetic Field.- Instability due to an Electron Drift.- Instability due to a Decay of an Electromagnetic Wave.- III. Incoherent Nonlinear Effects.- Quasi Linear Effects.- Nonlinear Mode Couplings.- IV. Coherent Nonlinear Effects.- Ion Acoustic Shock.- Ion Acoustic Solitons.- Weak Double Layers.- Hydromagnetic Waves in the Magnetosphere.- HM Modes in Cold Plasma.- The Effect of the Ionosphere.- Field Line Resonance.- Solution along B.- Resonances in Warm Plasmas.- Field-Aligned Currents.- Convection Flow and Alfven Waves.- Sources and Sinks of Wave Energy.- Comparative Magnetospheres.- Survey of Magnetospheres.- Plasma Flow: Corotation and its Limits.- Magnetospheric Distance Scales.- The Use and Misuse of Statistical Analyses.- Why Use Statistics?.- Confirmatory Studies.- Exploratory Studies.- Common-Sense Rules.- Useful Statistical Techniques.- Linear Correlation Analysis.- Searching for Periodicities.- Fourier Analysis.- Superposed Epoch Analysis.- Autocorrelation and Cross-Correlation Analyses.- Autocorrelation.- Power Spectral density.- Cross-Correlation Analysis.- Smoothing the Data.- Upper Atmospheric Physics.- Thermospheric Dynamics and Electrodynamics.- I. Introduction.- II. Basic Equations.- Mass Continuity.- Momentum Balance.- Energy Balance.- Pressure and Internal Energy.- Diffusion.- Viscosity.- Heat Conduction.- Electric Conductivities.- III. Large-Scale Thermospheric Structure and Dynamics.- Hydrostatic Equilibrium.- Steady-State Thermal Structure.- Thermospheric Heating.- Mean Meridional Circulation of the Thermosphere.- Steady-State Composition.- Large-Scale Dynamics.- Importance of Ion Drag.- Importance of Viscosity.- Computer Simulations of Thermospheric Dynamics.- IV. Atmospheric Waves.- Entropy Equation.- Pressure Change Equation.- Linearized Perturbation Equations in a Plane Stratified Atmosphere.- Wave Energy Equation.- Two Simplified Limiting Cases.- Dispersion Relation for Waves in a Dissipationless Atmosphere, Neglecting Rotation.- Ducting.- Vertical Energy Flux.- Wave Energy Density.- Properties of Long-Period Gravity Waves.- Gravity Wave Energy Dissipation.- Atmospheric Tides.- V. Electrodynamics.- Basic Equations.- Horizontal and Vertical Current Densities.- Dynamo Action by Winds.- Approximation of Infinitely Conducting Magnetic Field Lines.- Dipole Coordinates.- Solution for V.- Equatorial Electrojet.- VI. Thermospheric Disturbances.- Two-Dimensional Time-Dependent Model Description.- Substorm Simulation.- Electrodynamic Effects of Stormtime Heating.- Energy Transfer to Lower Latitudes.- Stormtime Composition Changes.- Glossary of Symbols.- The Terrestrial Ionosphere.- I. Introduction.- II. Ionospheric Environment.- High-latitude Ionosphere.- Mid-latitude Ionosphere.- Low-latitude Ionosphere.- Ionospheric Layers.- III. The Theory.- Transport Equations.- Collision Terms.- Collision Frequencies.- Stress and Heat Flow Expressions.- Photoionization.- Chemical Reactions.- Heating Rates.- Cooling Rates.- IV. Middle and Low Latitude Ionosphere.- Chapman Layer.- Ambipolar Diffusion.- Diffusive Equilibrium.- Wind-induced Plasma Drift.- Decay of the F-layer.- Thermal Structure.- Diurnal Variation of the Ionosphere.- Solar Cycle Variation of the Ionosphere.- Seasonal Variation of the Ionosphere.- Ionospheric Behavior at Low Latitudes.- V. High latitude ionosphere.- Plasma Convection.- Magnetospheric Convection Pattern.- Electron Density Morphology.- Effect of Electric Fields on Ion Temperature.- Effect of Electric Fields on Ion Composition.- VI. Polar Wind.- Subsonic H+ Outflow.- Supersonic H+ Outflow.- Hydrodynamic Solutions.- Collisionless Solutions.- Self-Similar Solutions.- Photochemical Processes in the Mesosphere and Lower Thermosphere.- I. Physical and Chemical Concepts.- The Hydrostatic Law.- Transport Processes.- Photochemical Production and Loss.- Absorption of Solar Flux.- Calculation of Photodissociation Rates.- II. The one-dimensional continuity equation in the Upper mesosphere.- The Chemistry of H0X and 0X.- Production of Nitric Oxide.- Atomic Oxygen Profile.- III. Ion chemistry.- The Lower E-Region the D-Region Cluster Ions in the D-Region.- D-Region Negative Ion Chemistry.- The Disturbed D-Region.- Physics of the Mesopause Region.- I. Characteristics of the Mesospause Region.- Thermal and Dynamical Structure.- Physical Processes.- II. Some Fundamental Dynamics.- The Perturbation Approach (Linearization).- Thermal Wind Balance.- Wave-Mean Flow Interactions.- III. Radiative Cooling Near the Mesopause.- Simple Radiative Transfer.- Non-LTE and Collisional Relaxation.- The ‘Cooling to Space1 and ’Newtonian Cooling’ Approximations.- IV. Zonal Mean Latitude Structure.- Radiative and Thermal Budgets.- Radiative-Dynamical Balance and the Possible Role of Wave Stress.- Auroral Excitation and Energy Dissipation.- Penetration of Auroral Electrons into the Atmosphere.- Inelastic Scattering.- Electron Intensity and Energy Deposition.- Excitation by Electron Impact.- Auroral Ion Chemistry and Transport.- Chemical Excitation.- Theory of the Auroral Spectrum.- Dissipation of Auroral Energy.- Auroral Protons.- Summary.- Small-Scale Structure in the Earth1s Ionosphere: Theory and Numerical Simulation.- The Gradient Drift/Collisional Rayleigh-Taylor Instability.- The Motion of Ionospheric Plasma.- Model Simplification and Mathematical Representation.- The Simplest Case Equations for Barium Clouds and for ESF.- Numerical Simulation: General.- The Numerical Solution of the Potential Equation.- The Numerical Solution of the Continuity Equation.- Comparative Ionospheres.- I. The Inner Planets.- Neutral Atmosphere.- Solar Wind-Ionosphere Interaction.- The Dayside Ionosphere: Basic Equations.- The Dayside Ionosphere: Composition.- The Dayside Ionosphere: Energetics.- The Nightside Ionosphere.- II. The Outer Planets.- Jupiter and Saturn: Thermosphere Composition and Temperature Structure.- Jupiter and Saturn: Thermosphere Hydrocarbons and Atomic Hydrogen.- Jupiter and Saturn: The Ionosphere.- The Jovian Satellite Io.- The Saturnian Satellite Titan.- Comets.