<p>1. Basic Biology of GAPDH<br>1.1 The GAPDH Gene<br> 1.1.1 Coding Region<br> 1.1.2 Promoter Sequence<br> 1.1.2.1 Hypoxia-Responsive Elements<br> 1.1.2.2 Basal Level Expression<br> 1.1.2.3 Glutamine-Responsive Elements<br> 1.1.3 Testes-Specific Isoform<br> 1.1.4 Pseudogenes<br>1.2 Regulation of GAPDH Expression<br> 1.2.1 Tissue Specificity<br> 1.2.2 Electronic Databases<br> 1.2.3 Cancer<br>1.3 Cellular Levels of GAPDH<br>1.4 Oxidoreductase Activity of GAPDH<br> 1.4.1 Mechanism of Catalysis<br> 1.4.2 Kinetic Parameters<br>1.5 Protein Architecture of GAPDH <br> 1.5.1 Asymmetric Homotetramer <br> 1.5.2 Dinucleotide Binding Domain<br> 1.5.3 Catalytic Domain </p><p>2. GAPDH and Intermediary Metabolism<br>2.1 GAPDH, the Glycolytic Lynch-Pin<br> 2.1.1 Metabolic Switch <br>2.1.2 Glycolytic Tissues<br> 2.1.3 Anaerobic Glycolysis<br>2.2 Determining GAPDH Activity<br> 2.2.1 Chemical Inhibitors<br> 2.2.2 Measurement of Glycolytic Flux<br> 2.2.3 Oxidoreductase Activity of GAPDH<br> 2.2.3.1 Conditions of Assay<br> 2.2.3.2 Assay Protocol<br>2.3 Role of GAPDH Metabolites<br> 2.3.1 Counter-Catalytic Activity<br> 2.3.2 Controlling NADH levels<br> 2.3.3 Phosphocreatine, as a Competitive Inhibitor<br> 2.3.4 Metabolic Parameters in the Brain<br>2.4 Comparative Analysis<br> 2.4.1 Structure-Function of NAD<sup>+</sup>-Binding<br> 2.4.2 Sequence Homology</p><p>3. Compartmentation of GAPDH<br>3.1 Compartmentation of Glycolytic Energy<br> 3.1.1 Microzones of Cellular ATP<br> 3.1.2 Focal Regulation of NAD<sup>+</sup>/NADH Ratios<br /> 3.1.3 Channeling of Metabolites<br> 3.1.4 Non-Glycolytic Compartmentation<br>3.2 Binding to the Plasma Membrane<br> 3.2.1 SLC4 Anion Exchanger<br> 3.2.1.1 Band 3 in Erythrocytes<br> 3.2.1.2 Kidney AE1 Isoform<br> 3.2.2 Na<sup>+</sup>/K<sup>+</sup>-ATPase<br> 3.2.3 ATP-sensitive K<sup>+</sup>-Channel<br> 3.2.4 Glucose Transporters<br> 3.2.4.1 GLUT1 Transporter in Erythrocytes<br> 3.2.4.2 GLUT4 Transporter<br> 3.2.5 GABA (type A) Receptor<br> 3.2.6 GAPDH, as a Lactoferrin Receptor<br>3.3 Translocation to the Nucleus<br>3.4 Other Non-Cytosolic Destinations<br> 3.4.1 Clathrin-Coated Vesicles <br> 3.4.2 Golgi Apparatus and Endoplasmic Reticulum <br> 3.4.3 Sarcoplasmic Reticulum<br> 3.4.4 Mitochondria<br>3.5 Dendrites, Axons and Synapses<br> 3.5.1 Synaptic Vesicles<br> 3.5.1.1 Glutamate Uptake into Vesicles<br> 3.5.2 Post-Synaptic Density<br>3.6 Specialized Compartment for Spermatogenic GAPDH </p><p>4. Functional Diversity<br>4.1 Classical Example of Protein ‘Moonlighting’ <br> 4.1.1 Evolutionary Considerations<br> 4.1.2 Molecular Mechanisms<br>4.2 Structural Organization of the Cell<br> 4.2.1 Cytoskeletal Components<br> 4.2.1.1 Actin Filaments<br> 4.2.1.2 Microtubules<br> 4.2.2 Organelle Biogenesis<br> 4.2.2.1 Triadic Junction<br> 4.2.2.2 Nuclear Envelope<br> 4.2.2.3 Vesicle Recycling/Membrane Fusion<br> 4.2.2.4 Cell Polarization<br> 4.2.2.5 Golgi and Endoplasmic Reticulum<br> 4.2.3 Autophagy<br>4.3 Transmission of Genetic Information<br> 4.3.1 RNA<br> 4.3.1.1 mRNA<br> 4.3.1.2 Polyribosomes<br /> 4.3.1.3 tRNA<br> 4.3.1.4 RNA viruses<br> 4.3.2 Gene Expression<br> 4.3.3 DNA Repair<br> 4.4 Signal Transduction Networks<br> 4.4.1 Nitric Oxide<br> 4.4.2 Unfolded Protein Response<br> 4.4.3 Peroxide Stress<br> 4.4.4 PI3K/Akt/mTOR Signaling<br> 4.4.5 Light and Dark Cycles</p><p>5. GAPDH, as a Virulence Factor<br>5.1 Surface-Localized GAPDH in Pathogenic Organisms<br> 5.1.1 Streptococcal Microorganisms<br> 5.1.1.1 Group A Streptococcus<br> 5.1.1.2 Other b-Hemolytic Streptococci<br> 5.1.1.3 a-Hemolytic Streptococci<br> 5.1.2 Mycoplasmas<br> 5.1.3 Candida albicans<br>5.2 GAPDH, as a Pathogenic Secretory Protein<br>5.3 Mining the Antigenic Properties of GAPDH<br> 5.3.1 In Search of a Vaccine for Mycoplasma bovis<br> 5.3.2 Tracking the Course of Candidiasis<br>5.4 Pathogenic Mechanisms of Action<br> 5.4.1 Molecular Mimicry and Immune Modulation<br> 5.4.2 Virulence Maintenance<br> 5.4.3 Phagocytic Strategy<br> 5.4.4 Pathogenic Receptor for Host Plasminogen<br> 5.4.5 Adhesive Functions in Pathogen-Host Interaction<br> 5.4.6 Viral Mechanisms</p><p>6. Target for Diverse Chemical Modifications<br>6.1 Post-Translational Protein Modification <br> 6.1.1 GAPDH Isozymes<br> 6.1.1.1 Early Investigations<br> 6.1.1.2 Current Observations<br> 6.1.1.3 Organisms with GAPDH Isozymes<br> 6.1.2 Auto-Catalytic Processes <br> 6.1.3 Enzymatic Modifications of GAPDH <br>6.2 Susceptibility to Stochastic Chemical Modifications<br> 6.2.1 Oxidation of Active Site Cysteine<br> 6.2.1.1 Disulfide Bond Formation<br> 6.2.1.2 Sulfhydryl to Sulfenic Acid<br /> 6.2.2 Succination of Active Site Cysteine<br> 6.2.3 Nitration<br> 6.2.4 Glycation<br> 6.2.5 Lipid Peroxidative Byproducts<br> 6.2.6 S-Sulfhydration<br>6.3 Proposed Models for Cellular Decline<br> 6.3.1 Blocking Cellular Chaperonins<br> 6.3.2 Dehydration Model<br>6.4 Proposed Models for Cell Survival<br> 6.4.1 New and Old Perspectives<br> 6.4.1.1 Continuity in Cell Funcion<br> 6.4.1.2 Linkage to Energy Metabolism<br> 6.4.1.3 Sensor of Chemical Stressors<br> 6.4.2 S-Thiolation<br> 6.4.3 ISGylation</p><p>7. Dynamic Oligomeric Properties<br>7.1 Factors affecting Stability<br> 7.1.1 Cooperativity<br> 7.1.2 Temperature<br> 7.1.2.1 Testing Anti-Aggregation Agents<br> 7.1.2.2 Folding Accessory Proteins<br> 7.1.3 Chemical Denaturants<br>7.2 Factors affecting Oligomerization<br> 7.2.1 Storage (in vitro Aging)<br> 7.2.2 Chemical Modification<br> 7.2.2.1 Maleylation<br> 7.2.2.2 Acetylation<br> 7.2.2.3 Pyridoxal Phosphate<br> 7.2.2.4 Carbamylation<br> 7.2.2.5 Succinic Anhydride<br> 7.2.2.6 Cross-Linking Agents<br> 7.2.3 Substrates and Coenzymes<br> 7.2.4 Chloride Ions<br> 7.2.5 Adenine Nucleotides<br>7.3 Comparative Analysis<br> 7.3.1 Tetrameric Hybrids<br> 7.3.2 Adenosine Binding Site<br>7.4 Domain Exchange<br> 7.2.1 Human Serum Albumin as a Model<br> 7.3.2 Other Model Proteins<br> 7.3.3 Proposed Oligomeric Dynamics of GAPDH</p>8. Multiple Binding Partners<br>8.1 The Interactome<br> 8.1.1 Emerging Mechanisms <br> 8.1.2 Role of Acidic Dipeptide Sequences<br /> 8.1.3 Criteria for Interactive Partner<br> 8.1.4 Glycolytic Interactome<br>8.2 Proteins associated with Neurodegenerative Diseases <br> 8.2.1 Alzheimers Disease: Amyloid-b Peptide and Tau <br> 8.2.2 Parkinsons Disease: a-Synuclein<br> 8.2.3 Proteins with Tracts of Polyglutamine Repeats<br> 8.2.4 Cataracts<br>8.3 Multiple Catalytic Functions<br> 8.3.1 Peroxidase Activity<br> 8.3.2 S-Nitrosylase Activity<br> 8.3.3 Kinase Activity 8.3.4 ADP-Ribosylase Activity<p><p>9. GAPDH in Anesthesia<br>9.1 Is Anesthesia Mediated by GAPDH?<br> 9.1.1 GABA<sub>A</sub> Receptor<br> 9.1.2 GAPDH Regulates GABA<sub>A</sub> Receptor<br> 9.1.3 Proposed Mechanism of Action of Inhaled Anesthetics<br>9.2 Binding of Inhaled Anesthetics<br> 9.2.1 Anesthetic Binding Site<br> 9.2.2 Human Serum Albumin as a Model Protein<br> 9.2.3 Other Model Proteins<br> 9.2.4 Adenine Metabolites<br>9.3 GAPDH and Isoflurane Preconditioning<br> 9.3.1 The Phenomenon of Anesthetic Preconditioning<br> 9.3.2 Dehydration-Induced Protein Misfolding </p>