<p>Preface </p><p>1. Composition and dynamics of the eukaryotic replisome: a brief overview; Stuart A. MacNeill<br>1.1 Introduction<br>1.2 Replication origins and the origin recognition complex<br>1.3 Formation of the pre-RC at origins<br>1.4 The replisome progression complex<br>1.5 The replicative polymerases<br>1.6 Sliding clamp and clamp loader complexes<br>1.7 Okazaki fragment processing<br>1.8 Model systems for the studying eukaryotic replication<br> 1.8.1 SV40<br> 1.8.2 Yeast<br> 1.8.3 Xenopus<br> 1.8.4 Archaea<br> 1.8.5 Other model systems<br>1.9 Conclusions<br>Acknowledgements<br>References</p><p>2. Evolutionary diversification of eukaryotic DNA replication machinery; Stephen J. Aves, Yuan Liu and Thomas A. Richards<br>2.1 Introduction<br>2.2 Eukaryotic diversity<br>2.3 Conservation of replisome proteins<br>2.4 Indispensable replisome proteins<br>2.5 Replisome proteins present in all eukaryotic supergroups<br>2.6 Replisome proteins not present in all supergroups<br>2.7 A complex ancestral replisome<br>2.8 Conclusions<br>References</p><p>3. The origin recognition complex: a biochemical and structural view; Huilin Li and Bruce Stillman<br>3.1 Introduction<br>3.2 The S. cerevisiae ORC<br>3.3 The S. pombe ORC<br>3.4 The D. melanogaster ORC<br>3.5 The H. sapiens ORC<br>3.6 Future perspectives<br>Acknowledgements<br>References</p><p>4. Archaeal Orc1/Cdc6 Proteins; Stephen D. Bell<br>4.1 Introduction<br>4.2 Origins of DNA replication in the Archaea<br>4.3 Orc1/Cdc6 Structure<br>4.4 Structures of Orc1/Cdc6 bound to DNA<br>4.5 Beyond binding origins – what do Orc1/Cdc6s do?Acknowledgements<br>References</p><p>5. Cdt1 and Geminin in DNA replication initiation; Christophe Caillat and Anastassis Perrakis<br>5.1 Cdt1 and Geminin: a functional preview5.2 The multiple faces of Geminin<br> 5.2.1 Geminin functions in replication licensing<br> 5.2.2 Geminin in the cell cycle<br> 5.2.3 Geminin in cell differentiation<br>5.3 The structure of Geminin<br> 5.3.1 The N-terminal domain <br> 5.3.2 The coiled-coil domain<br>5.4 The structure of Cdt1<br> 5.4.1 The N-terminal domain is highly regulated<br> 5.4.2 The structurally conserved winged helix domains<br> 5.4.3 The recruitment of Cdt1 on chromatin<br>5.5 The Cdt1-Geminin complex<br> 5.5.1 The primary and secondary interfaces<br> 5.5.2 The tertiary interface<br> 5.5.3 Conformational change of the N-terminal domain?<br>5.6 Models for a Cdt1-Geminin molecular switch<br>5.7 Conclusions<br>References</p><p>6. MCM structure and mechanics: what we have learned from archaeal MCM: Ian M. Slaymaker and Xiaojiang S. Chen<br>6.1 Introduction<br>6.2 Complex organization: Hexamers and double hexamers<br>6.3 Helicase activity <br> 6.3.1 Steric exclusion<br> 6.3.2 Ploughshare<br> 6.3.3 LTag looping model (or strand exclusion)<br> 6.3.4 Rotary pump <br>6.4 Domains and features of an MCM subunit<br> 6.4.1 N domain <br> 6.4.2 C domain <br> 6.4.2.1 ATP binding pocket<br> 6.4.2.2 Hairpins, helices and inserts<br> 6.4.2.3 Winged helix domain<br>6.5 Inter- and intra-subunit communication<br>6.6 Higher-order MCM oligomers <br>6.7 Conclusions<br>References</p><p>7. The Eukaryotic Mcm2-7 Replicative Helicase; Sriram Vijayraghavan and Anthony Schwacha<br>7.1 Introduction <br>7.2 The ‘Mcm problem’ and nonequivalent ATPase active sites<br>7.3 Discovery of Mcm2-7 helicase activity and the Mcm2/5 gate <br> 7.3.1 Differences in circular ssDNA binding between Mcm2-7 and Mcm467<br> 7.3.2 An in vitro condition that ‘closes’ Mcm2-7 stimulates its helicase activity<br/> 7.3.3 The Mcm2/5 ‘gate’ model – the open conformation and DNA unwinding are mutually exclusive<br>7.4 The CMG complex <br> 7.4.1 Discovery of the CMG complex<br> 7.4.2 CMG structure – Cdc45 and GINS close the Mcm2/5 gate<br> 7.4.3 Possible regulation of the Mcm2/5 gate<br>7.5 How does Mcm2-7 unwind DNA? <br> 7.5.1 Mcm2-7 loads as double hexamers onto dsDNA<br> 7.5.2 Single-molecule studies eliminate the dsDNA pump model for elongation<br>7. 6 Speculative model for Mcm2-7 function <br>Acknowledgements<br>References</p><p>8. The GINS complex: structure and function; Katsuhiko Kamada<br>8.1 Introduction<br>8.2 Discovery of GINS<br>8.3 GINS functions<br> 8.3.1 Replication initiation in the budding yeast<br> 8.3.2 Replication initiation in the fission yeast <br> 8.3.3 Replication initiation in higher eukaryotes<br> 8.3.4 GINS in the replication progression complex<br>8.4 Structure of GINS<br> 8.4.1 Overall structure<br> 8.4.2 Two structural domains in all subunits<br> 8.4.3 Functional interface of the GINS complex<br> 8.4.4 GINS and the CMG complex<br> 8.4.5 EM images and DNA clamping action<br>8.5 Archaeal GINS<br> 8.5.1 Structure and evolution<br> 8.5.2 Biological functions of archaeal GINS<br>8.6 Conclusions and prospects<br>Acknowledgments<br>References</p><p>9. The Pol α-primase complex; Luca Pellegrini<br>9.1 Introduction<br>9.2 Primase<br> 9.2.1 Prim fold of the catalytic subunit<br> 9.2.2 The archaeal/eukaryotic primase is an iron-sulfur protein<br>9.3 DNA polymerase α<br> 9.3.1 Catalytic activity<br> 9.3.2 Structure of the B subunit and its interaction with Pol α<br>9.4 Towards a concerted mechanism for primer synthesis by the Pol α-primase complex<br>9.5 Outlook<br>References</p><p>10. The structure and function of replication protein A in DNA replication; Aishwarya Prakash and Gloria E. O. Borgstahl<br>10.1 Introduction <br>10.2 Evolution of RPA<br>10.3 RPA structure<br>10.4 Interactions of RPA with single-stranded DNA<br>10.5 DNA structure and requirement for RPA <br>10.6 RPA binding to non-canonical DNA structures<br>10.7 RPA binding to damaged DNA<br>10.8 Role in recruiting proteins to the replication fork<br>10.9 Concluding remarks – future research on RPA<br>Acknowledgements<br>References</p><p>11. Structural biology of replication initiation factor Mcm10; Wenyue Du, Melissa E. Stauffer and Brandt F. Eichman<br><sup>11.1 Replication initiation<br>11.2 Role of Mcm10 in replication<br>11.3 Overall architecture<br>11.4 Mcm10 domain structure<br> 11.4.1 Mcm10-NTD<br> 11.4.2 Mcm10-ID<br> 11.4.3 Mcm10-CTD<br>11.5 Implications of modular architecture for function<br>11.6 Summary and future perspectives <br>References<p>12. Structure and function of eukaryotic DNA polymerase d; Tahir H. Tahirov<br>12.1 Introduction<br>12.2 Catalytic subunit (A-subunit)<br> 12.2.1 Crystal structure of catalytic core <br> 12.2.2 Cancer-causing mutations<br> 12.2.3 C-terminal domain<br> 12.2.4 Similarities between C-terminal domains of Pol d and Pol z <br>12.3 B- and C-subunits<br> 12.3.1 Crystal structure of p50p66<sub>N<br></sub> 12.3.2 p50p66 Interactions <br> 12.3.3 Functional studies<br> 12.3.4 Crystal structure of p66•PCNA<br>12.4 D-subunit<br> 12.4.1 D-subunit structure and inter-subunit interactions<br> 12.4.2 D-subunit function<br>12.5 Conclusions and prospects<br>References</p><p>13. DNA polymerase ε; Matthew Hogg and Erik Johansson<br>13.1 Introduction<br>13.2 Structure of Pol ε subunits<br> 13.2.1 Pol2<br> 13.2.2 Dpb2<br> 13.2.3 Dpb3/Dpb4 dimer<br>13.3 Structure of Pol ε holoenzyme<br>13.4 Higher order structures 13.4.1 Initiation of DNA replication<br> 13.4.2 Role at the replication fork<br> 13.4.3 PCNA<br> 13.4.4 Checkpoint activation in S phase <br>13.5 Ribose vs deoxyribose discrimination<br>13.6 Concluding remarks<br>Acknowledgements<br>References</p><p>14. The RFC clamp loader: structure and function; Nina Y. Yao and Mike O’Donnell<br>14.1 Overview of clamp loaders and sliding clamps<br>14.2 Clamp loader structure <br>14.3 RFC clamp loader interaction with DNA<br>14.4 ATP binding and opening of the clamp<br>14.5 ATP hydrolysis and closing of the clamp<br>14.6 Clamp loaders also unload clamps after replication<br>14.7 Alternative RFCs<br>14.8 Conclusions<br>References</p><p>15. PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA; Lynne M. Dieckman, Bret D. Freudenthal and M. Todd Washington<br>15.1 Introduction<br>15.2 Structure of PCNA<br>15.3 Structures of PCNA complexes<br> 15.3.1 Structures of PCNA bound to PIP peptides<br> 15.3.2 Structures of PCNA bound to full-length proteins<br> 15.3.3 Low resolution structures of PCNA complexes <br> 15.3.4 Unresolved issues<br>15.4 Structures of mutant PCNA proteins<br>15.5 Structures of post-translationally modified PCNA<br> 15.5.1 Structure of ubiquitin-modified PCNA<br> 15.5.2 Structure of SUMO-modified PCNA<br>15.6 Concluding remarks<br>Acknowledgements<br>References</p><p>16. The wonders of Flap Endonucleases: structure, function, mechanism and regulation; L. David Finger, John M. Atack, Susan Tsutakawa, Scott Classen, John Tainer, Jane Grasby, Binghui Shen<br><sup>16.1 Introduction<br>16.2 Biochemical activity<br>16.3 FEN structure and substrate recognition<br> 16.3.1 Free protein<br> 16.3.2 Protein-product and protein-substrate complexes<br/> 16.3.3 Protein product complex 5ʹ-strand interactions<br> 16.3.4 Protein substrate complex 5ʹ-flap strand interactions<br> 16.3.5 Bind-then-thread or bind-then-clamp<br> 16.3.6 Scissile phosphate placement: the double nucleotide unpairing trap (DoNUT) <br> 16.3.7 Cleavage of the scissile phosphate diester: active site structure <br>16.4 Regulation of FEN1 Activity<br> 16.4.1 Protein-protein interactions<br> 16.4.1.1 PCNA<br> 16.4.1.2 RecQ helicase family interactions<br> 16.4.2 Post-translational Modifications<br>16.5 Handoff of DNA intermediates<br>Acknowledgements<br>References<p>17. DNA ligase I, the replicative DNA ligase; Timothy R.L. Howes, Alan E. Tomkinson<br>17.1 Introduction<br>17.2 Eukaryotic DNA ligase genes<br>17.3 DNA ligase I: molecular genetics and cell biology<br>17.4 DNA ligase I protein: structure and function<br>17.5 DNA ligase I: protein interactions<br>17.6 Concluding remarks<br>References</p>