The Eukaryotic Replisome: a Guide to Protein Structure and Function

Specificaties
Gebonden, 348 blz. | Engels
Springer Netherlands | 2012e druk, 2012
ISBN13: 9789400745711
Rubricering
Springer Netherlands 2012e druk, 2012 9789400745711
Onderdeel van serie Subcellular Biochemistry
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

High-fidelity chromosomal DNA replication underpins all life on the planet. In humans, there are clear links between chromosome replication defects and genome instability, genetic disease and cancer, making a detailed understanding of the molecular mechanisms of genome duplication vital for future advances in diagnosis and treatment. Building on recent exciting advances in protein structure determination, the book will take the reader on a guided journey through the intricate molecular machinery of eukaryotic chromosome replication and provide an invaluable source of information, ideas and inspiration for all those with an interest in chromosome replication, whether from a basic science, translational biology and medical research perspective.

Specificaties

ISBN13:9789400745711
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:348
Uitgever:Springer Netherlands
Druk:2012

Inhoudsopgave

<p>Preface </p><p>1. Composition and dynamics of the eukaryotic replisome: a brief overview; Stuart A. MacNeill<br>1.1 Introduction<br>1.2 Replication origins and the origin recognition complex<br>1.3 Formation of the pre-RC at origins<br>1.4 The replisome progression complex<br>1.5 The replicative polymerases<br>1.6 Sliding clamp and clamp loader complexes<br>1.7 Okazaki fragment processing<br>1.8 Model systems for the studying eukaryotic replication<br>   1.8.1 SV40<br>   1.8.2 Yeast<br>   1.8.3 Xenopus<br>   1.8.4 Archaea<br>   1.8.5 Other model systems<br>1.9 Conclusions<br>Acknowledgements<br>References</p><p>2. Evolutionary diversification of eukaryotic DNA replication machinery; Stephen J. Aves, Yuan Liu and Thomas A. Richards<br>2.1 Introduction<br>2.2 Eukaryotic diversity<br>2.3 Conservation of replisome proteins<br>2.4 Indispensable replisome proteins<br>2.5 Replisome proteins present in all eukaryotic supergroups<br>2.6 Replisome proteins not present in all supergroups<br>2.7 A complex ancestral replisome<br>2.8 Conclusions<br>References</p><p>3. The origin recognition complex: a biochemical and structural view; Huilin Li and Bruce Stillman<br>3.1 Introduction<br>3.2 The S. cerevisiae ORC<br>3.3 The S. pombe ORC<br>3.4 The D. melanogaster ORC<br>3.5 The H. sapiens ORC<br>3.6 Future perspectives<br>Acknowledgements<br>References</p><p>4. Archaeal Orc1/Cdc6 Proteins; Stephen D. Bell<br>4.1 Introduction<br>4.2 Origins of DNA replication in the Archaea<br>4.3 Orc1/Cdc6 Structure<br>4.4 Structures of Orc1/Cdc6 bound to DNA<br>4.5 Beyond binding origins – what do Orc1/Cdc6s do?Acknowledgements<br>References</p><p>5. Cdt1 and Geminin in DNA replication initiation; Christophe Caillat and Anastassis Perrakis<br>5.1 Cdt1 and Geminin: a functional preview5.2 The multiple faces of Geminin<br>   5.2.1 Geminin functions in replication licensing<br>   5.2.2 Geminin in the cell cycle<br>   5.2.3 Geminin in cell differentiation<br>5.3 The structure of Geminin<br>   5.3.1 The N-terminal domain <br>   5.3.2 The coiled-coil domain<br>5.4 The structure of Cdt1<br>   5.4.1 The N-terminal domain is highly regulated<br>   5.4.2 The structurally conserved winged helix domains<br>   5.4.3 The recruitment of Cdt1 on chromatin<br>5.5 The Cdt1-Geminin complex<br>   5.5.1 The primary and secondary interfaces<br>   5.5.2 The tertiary interface<br>   5.5.3 Conformational change of the N-terminal domain?<br>5.6 Models for a Cdt1-Geminin molecular switch<br>5.7 Conclusions<br>References</p><p>6. MCM structure and mechanics: what we have learned from archaeal MCM: Ian M. Slaymaker and Xiaojiang S. Chen<br>6.1 Introduction<br>6.2 Complex organization: Hexamers and double hexamers<br>6.3 Helicase activity <br>   6.3.1 Steric exclusion<br>   6.3.2 Ploughshare<br>   6.3.3 LTag looping model (or strand exclusion)<br>   6.3.4 Rotary pump <br>6.4 Domains and features of an MCM subunit<br>   6.4.1 N domain <br>   6.4.2 C domain <br>       6.4.2.1 ATP binding pocket<br>       6.4.2.2 Hairpins, helices and inserts<br>       6.4.2.3 Winged helix domain<br>6.5 Inter- and intra-subunit communication<br>6.6 Higher-order MCM oligomers <br>6.7 Conclusions<br>References</p><p>7. The Eukaryotic Mcm2-7 Replicative Helicase; Sriram Vijayraghavan and Anthony Schwacha<br>7.1 Introduction <br>7.2 The ‘Mcm problem’ and nonequivalent ATPase active sites<br>7.3 Discovery of Mcm2-7 helicase activity and the Mcm2/5 gate <br>   7.3.1 Differences in circular ssDNA binding between Mcm2-7 and Mcm467<br>   7.3.2 An in vitro condition that ‘closes’ Mcm2-7 stimulates its helicase activity<br/>   7.3.3 The Mcm2/5 ‘gate’ model – the open conformation and DNA unwinding are mutually exclusive<br>7.4 The CMG complex <br>   7.4.1 Discovery of the CMG complex<br>   7.4.2 CMG structure – Cdc45 and GINS close the Mcm2/5 gate<br>   7.4.3 Possible regulation of the Mcm2/5 gate<br>7.5 How does Mcm2-7 unwind DNA? <br>   7.5.1 Mcm2-7 loads as double hexamers onto dsDNA<br>   7.5.2 Single-molecule studies eliminate the dsDNA pump model for elongation<br>7. 6 Speculative model for Mcm2-7 function <br>Acknowledgements<br>References</p><p>8. The GINS complex: structure and function; Katsuhiko Kamada<br>8.1 Introduction<br>8.2 Discovery of GINS<br>8.3 GINS functions<br>   8.3.1 Replication initiation in the budding yeast<br>   8.3.2 Replication initiation in the fission yeast <br>   8.3.3 Replication initiation in higher eukaryotes<br>   8.3.4 GINS in the replication progression complex<br>8.4 Structure of GINS<br>   8.4.1 Overall structure<br>   8.4.2 Two structural domains in all subunits<br>   8.4.3 Functional interface of the GINS complex<br>   8.4.4 GINS and the CMG complex<br>   8.4.5 EM images and DNA clamping action<br>8.5 Archaeal GINS<br>   8.5.1 Structure and evolution<br>   8.5.2 Biological functions of archaeal GINS<br>8.6 Conclusions and prospects<br>Acknowledgments<br>References</p><p>9. The Pol α-primase complex; Luca Pellegrini<br>9.1 Introduction<br>9.2 Primase<br>   9.2.1 Prim fold of the catalytic subunit<br>   9.2.2 The archaeal/eukaryotic primase is an iron-sulfur protein<br>9.3 DNA polymerase α<br>   9.3.1 Catalytic activity<br>   9.3.2 Structure of the B subunit and its interaction with Pol α<br>9.4 Towards a concerted mechanism for primer synthesis by the Pol α-primase complex<br>9.5 Outlook<br>References</p><p>10. The structure and function of replication protein A in DNA replication; Aishwarya Prakash and Gloria E. O. Borgstahl<br>10.1 Introduction <br>10.2 Evolution of RPA<br>10.3 RPA structure<br>10.4 Interactions of RPA with single-stranded DNA<br>10.5 DNA structure and requirement for RPA <br>10.6 RPA binding to non-canonical DNA structures<br>10.7 RPA binding to damaged DNA<br>10.8 Role in recruiting proteins to the replication fork<br>10.9 Concluding remarks – future research on RPA<br>Acknowledgements<br>References</p><p>11. Structural biology of replication initiation factor Mcm10; Wenyue Du, Melissa E. Stauffer and Brandt F. Eichman<br><sup>11.1 Replication initiation<br>11.2 Role of Mcm10 in replication<br>11.3 Overall architecture<br>11.4 Mcm10 domain structure<br>   11.4.1 Mcm10-NTD<br>   11.4.2 Mcm10-ID<br>   11.4.3 Mcm10-CTD<br>11.5 Implications of modular architecture for function<br>11.6 Summary and future perspectives <br>References<p>12. Structure and function of eukaryotic DNA polymerase d; Tahir H. Tahirov<br>12.1 Introduction<br>12.2 Catalytic subunit (A-subunit)<br>   12.2.1 Crystal structure of catalytic core <br>   12.2.2 Cancer-causing mutations<br>   12.2.3 C-terminal domain<br>   12.2.4 Similarities between C-terminal domains of Pol d and Pol z <br>12.3 B- and C-subunits<br>   12.3.1 Crystal structure of p50Ÿp66<sub>N<br></sub>   12.3.2 p50Ÿp66 Interactions <br>   12.3.3 Functional studies<br>   12.3.4 Crystal structure of p66•PCNA<br>12.4 D-subunit<br>   12.4.1 D-subunit structure and inter-subunit interactions<br>   12.4.2 D-subunit function<br>12.5 Conclusions and prospects<br>References</p><p>13. DNA polymerase ε; Matthew Hogg and Erik Johansson<br>13.1 Introduction<br>13.2 Structure of Pol ε subunits<br>   13.2.1 Pol2<br>   13.2.2 Dpb2<br>   13.2.3 Dpb3/Dpb4 dimer<br>13.3 Structure of Pol ε holoenzyme<br>13.4 Higher order structures    13.4.1 Initiation of DNA replication<br>   13.4.2 Role at the replication fork<br>   13.4.3 PCNA<br>   13.4.4 Checkpoint activation in S phase <br>13.5 Ribose vs deoxyribose discrimination<br>13.6 Concluding remarks<br>Acknowledgements<br>References</p><p>14. The RFC clamp loader: structure and function; Nina Y. Yao and Mike O’Donnell<br>14.1 Overview of clamp loaders and sliding clamps<br>14.2 Clamp loader structure <br>14.3 RFC clamp loader interaction with DNA<br>14.4 ATP binding and opening of the clamp<br>14.5 ATP hydrolysis and closing of the clamp<br>14.6 Clamp loaders also unload clamps after replication<br>14.7 Alternative RFCs<br>14.8 Conclusions<br>References</p><p>15. PCNA structure and function: insights from structures of PCNA complexes and post-translationally modified PCNA; Lynne M. Dieckman, Bret D. Freudenthal and M. Todd Washington<br>15.1 Introduction<br>15.2 Structure of PCNA<br>15.3 Structures of PCNA complexes<br>   15.3.1 Structures of PCNA bound to PIP peptides<br>   15.3.2 Structures of PCNA bound to full-length proteins<br>   15.3.3 Low resolution structures of PCNA complexes <br>   15.3.4 Unresolved issues<br>15.4 Structures of mutant PCNA proteins<br>15.5 Structures of post-translationally modified PCNA<br>   15.5.1 Structure of ubiquitin-modified PCNA<br>   15.5.2 Structure of SUMO-modified PCNA<br>15.6 Concluding remarks<br>Acknowledgements<br>References</p><p>16. The wonders of Flap Endonucleases: structure, function, mechanism and regulation; L. David Finger, John M. Atack, Susan Tsutakawa, Scott Classen, John Tainer, Jane Grasby, Binghui Shen<br><sup>16.1 Introduction<br>16.2 Biochemical activity<br>16.3 FEN structure and substrate recognition<br>   16.3.1 Free protein<br>   16.3.2 Protein-product and protein-substrate complexes<br/>   16.3.3 Protein product complex 5ʹ-strand interactions<br>   16.3.4 Protein substrate complex 5ʹ-flap strand interactions<br>   16.3.5 Bind-then-thread or bind-then-clamp<br>   16.3.6 Scissile phosphate placement: the double nucleotide unpairing trap (DoNUT) <br>   16.3.7 Cleavage of the scissile phosphate diester: active site structure <br>16.4 Regulation of FEN1 Activity<br>   16.4.1 Protein-protein interactions<br>      16.4.1.1 PCNA<br>      16.4.1.2 RecQ helicase family interactions<br>   16.4.2 Post-translational Modifications<br>16.5 Handoff of DNA intermediates<br>Acknowledgements<br>References<p>17. DNA ligase I, the replicative DNA ligase; Timothy R.L. Howes, Alan E. Tomkinson<br>17.1 Introduction<br>17.2 Eukaryotic DNA ligase genes<br>17.3 DNA ligase I: molecular genetics and cell biology<br>17.4 DNA ligase I protein: structure and function<br>17.5 DNA ligase I: protein interactions<br>17.6 Concluding remarks<br>References</p>

Rubrieken

    Personen

      Trefwoorden

        The Eukaryotic Replisome: a Guide to Protein Structure and Function