The Is-Ought Problem

An Investigation in Philosophical Logic

Specificaties
Paperback, 332 blz. | Engels
Springer Netherlands | 0e druk, 2010
ISBN13: 9789048147953
Rubricering
Springer Netherlands 0e druk, 2010 9789048147953
Onderdeel van serie Trends in Logic
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Can OUGHT be derived from IS? This book presents an investigation of this time-honored problem by means of alethic-deontic predicate logic. New in this study is the leitmotif of relevance: is-ought inferences indeed exist, but they are all irrelevant in a precise logical sense. New proof techniques establish this result for very broad classes of logics. A profound philosophical analysis of is-ought bridge principles supplements the logical study. The final results imply incisive limitations for the justifiability of ethics as opposed to empirical science.

Specificaties

ISBN13:9789048147953
Taal:Engels
Bindwijze:paperback
Aantal pagina's:332
Uitgever:Springer Netherlands
Druk:0

Inhoudsopgave

1. Philosophical Background and Program of the Study.- 2. The Logical Background: A.D.1-Logics.- 3. The Logical Explication of Hume’s Thesis.- 4. The General Hume Thesis GH.- 5. The Special Hume Thesis SH.- 6. Weakened Versions of Hume’s Thesis in A.D.I-Logics with Bridge Principles.- 7. A.D.1-Logics with Weak Alethic Fragments: ? as a Subjective Propositional Attitude.- 8. Generalizations.- 9. Some Applications to Ethical Arguments.- 10. The Problems of Identity and Existence.- 11. Are There Analytic Bridge Principles? A Philosophical Investigation.- 12. Are Synthetic Bridge Principles Scientifically Justifiable?.- A.1 Interchange of substitution for predicates and for individual variables.- A.2 Transitivity of predicate substitutions.- A.5 Preservation of frame-validity under ?-substitution.- A.6 Advancing ?-, a- and d-rule.- A.7 Model-completeness for a.d.l-logics.- A.8 Singleton frames for a.d.1-logics which are not propositionally representable.- A.9 Canonical a.0-logics with incomplete 1-counterparts.- A.10 Canonicity transfer from a.0- to a.1-logics.- A.11 Canonicity transfer from monomodal to combined bimodal 1-logics.- A.12 Halldéncompleteness and the Bolzano-criterion.- A.13 Correspondence and canonicity for (N1-5).- A.14 Domains of j.1.-models.- A.16 Characterization of a.d.(G)2-logics.- A.17 Admissibility of (?GR).- Table of Definitions, Lemmata, Propositions, Theorems, Corollaries, Facts, Figures and Problems.- Notes.

Rubrieken

    Personen

      Trefwoorden

        The Is-Ought Problem