I / The Observational Basis of Nuclear Astrophysics.- I.1. The Importance of the Four Fundamental Interactions.- I.2. A Brief Description of the Observed Universe.- II / The Evolution of Matter in the Universe.- II.1. The Origin of the Universe.- II.1.1. The Hadron Era.- II.1.2. The Lepton Era.- II.1.3. The Radiation Era.- II.1.4. The Stellar Era.- II.2. Stellar Evolution.- II.2.1. The Hertzsprung-Russell Diagram.- II.2.2. Stellar Evolution.- III / The Chemical Composition of the Observable Universe.- III.1. Techniques for Abundance Determination.- III.1.1. The Direct Methods.- III.1.2. The Indirect Methods.- III.2. The Abundances of the Elements in the Universe.- III.3. Main-Sequence Peculiar Stars.- IV / Thermonuclear Reactions and Nuclear Reactions in Stellar Interiors.- IV.1. Nuclear Reactions: Generalities.- IV.2. Nuclear Reaction Rates.- IV.3. Hydrogen Burning.- IV.3.1. The Proton—Proton Chain or PPI Chain.- IV.3.2. The Proton Chains with a He Catalyst, or PPII and PPIII Chains.- IV.3.3. The CNO Cycles.- IV.4. Helium Burning.- IV.5. Hydrostatic C, O, and Si Burning.- IV.6. Conclusion.- V / Explosive Nucleosynthesis in Stars.- V.1. Supernovae.- V.1.1. The Fe Photodisintegration Mechanism.- V.l.2. The C Detonation Mechanism.- V.l.3. The Neutrino Transport Mechanism.- V.l.4. Deceleration of the Central Pulsar.- V.2. Other Explosive Objects or Explosive Stages.- V.2.1. The Helium Flashes.- V.2.2. The Novae Outbursts.- V.2.3. Explosions of Supermassive Stars.- V.3. The Explosive Nucleosynthesis.- V.4. The Main Results of the Explosive Nucleosynthesis.- V.4.1. Explosive Burning in H and He Burning Zones.- V.4.2. Explosive Nucleosynthesis in C, O, and Si Burning Zones.- VI / Formation of the Heavy Elements: s, r, and p Processes.- VI.1. Abundances of the Heavy Elements — Processes of Neutron Capture.- VI.2. Neutron Capture Reactions.- VI.3. The s Process.- VI.3.1. The Main Neutron Sources for the s Process.- VI.3.2. The s Process Nucleosynthesis.- VI.4. The r Process.- VI.5. The p Process.- VI.5.1. Weak Interaction Mechanism.- VI.5.2. Spallation Reactions.- VI.5.3. Thermonuclear Reactions.- VII / Nucleosynthesis of the Light Elements.- VII.1. The Abundance of the Light Elements.- VII.2. The Spallation Reactions.- VII.3. Production of Li, Be, B, by the Galactic Cosmic Rays.- VII.4. Light Element Production in Stellar Objects.- VII.4.1. Light Element Production in Supernovae Explosions.- VII.4.2. Other Stellar Sites to Produce 7Li.- VII.5. The Big Bang Nucleosynthesis.- VII.5.1. The Basic Assumptions.- VII.5.2. The Standard Model.- IV.6. Conclusion.- VIII / Nucleochronologies and the Formation of the Solar System.- VIII.1. Astronomical Chronologies.- VIII.2. Nucleochronologies.- VIII.2.1 Duration of the Nucleosynthesis: Long Lifetime Radionuclides.- VIII.2.2. The Short Lived Isotopes (?T? 1).- VIII.3. Isotopic Anomalies in Carbonaceous Chondrites.- VIII.4. The Astrophysical Implications of the Anomalies.- VIII.5. Conclusion.- IX / Chemical Evolution of Galaxies.- IX.1. Observational Abundance Distribution.- IX.2. The Ingredients of the Galactic Chemical Evolution.- IX.2.1. Parameters Related to the Stellar Populations.- IX.2.2. Dynamical Effects: Inflow of External Gas; Inhomogeneities.- IX.3. Evolution of the Solar Neighborhood.- IX.3.1. The Simple Model.- IX.3.2. Further Models of Evolution.- IX.3.2.1. Variable Initial Mass Function Models (VIMF).- IX.3.2.2. Prompt Initial Enrichment (PIE model).- IX.3.2.3. Metal Enhanced Star Formation (MESF).- IX.3.2.4. Accretion or Infall of External Gas.- IX.4. Numerical Models with No Instant Recycling.- IX.5. Conclusion: Chemical Evolution of Galaxies.- Conclusion.- Appendix A.I. Some Fundamental Constants.- Appendix A.II. Some Astronomical Constants.- Appendix A.III. Some Quantities Associated with One Electron-Volt.- Appendix B. Atomic Mass Excesses.- Index of Subjects.