Degeneration of algebraic hypersurfaces and applications to moduli problems

Specificaties
Paperback, 142 blz. | Engels
Scuola Normale Superiore | e druk, 1996
ISBN13: 9788876422775
Rubricering
Scuola Normale Superiore e druk, 1996 9788876422775
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

An important question concerning algebraic geometry and differential topology is the so-called def=diff? problem: are two complex structures on a closed compact differentiable 2n-manifold deformation of each other? In the case n=1 it is a classical result that the answer is yes, while in case n=2 the above question (Friedman-Morgan conjecture) has a positive answer in some cases, but in general is still unsolved. If we restrict to minimal algebraic surfaces of general type the above question can be interpreted in terms of properties of the moduli space of surfaces of general type. The main goal of this thesis is to study the general connectedness properties of moduli spaces of surfaces of general type and to construct some algebraic manifolds with the same underlying manifold structure that cannot be continuously deformed one in the other.

Specificaties

ISBN13:9788876422775
Taal:Engels
Bindwijze:paperback
Aantal pagina's:142
Uitgever:Scuola Normale Superiore

Rubrieken

    Personen

      Trefwoorden

        Degeneration of algebraic hypersurfaces and applications to moduli problems