<p>Preface.- J.-P. Bourguignon, Eugenio Calabi’s Short Biography.- Bibliographic List of Works.- S.-T. Yau, An Essay on Eugenio Calabi.- Part I: Commentaries on Calabi’s Life and Work: B. Lawson, Reflections on the Early Work of Eugenio Calabi.- M. Berger, Encounter with a Geometer: Eugenio Calabi.- J.-P. Bourguignon, Eugenio Calabi and Kähler Metrics.- C. LeBrun, Eugenio Calabi and the Curvature of Kähler Manifolds.- X. Chen, S. Donaldson, Calabi’s Work on Affine Differential Geometry and Results of Bernstein Type.- Part II: Collected Works: E. Calabi ,Ar. Dvoretzky, Convergence- and Sum-Factors for Series of Complex Numbers (1951).- E. Calabi, D. C. Spencer, Completely Integrable Almost Complex Manifolds (1951).- E. Calabi, Metric Riemann Surfaces (1953).- E. Calabi, M. Rosenlicht, Complex Analytic Manifolds Without Countable Base (1953).- E. Calabi, B. Eckmann, A Class of Compact, Complex Manifolds Which Are Not Algebraic (1953).- E. Calabi, Isometric Imbedding of Complex Manifolds (1953).- E. Calabi, The Space of Kähler Metrics (1954).- E. Calabi, The Variation of Kähler Metrics I. The Structure of the Space (1954).- E. Calabi, The Variation of Kähler Metrics II. A Minimum Problem (1954).- E. Calabi, On Kähler Manifolds With Vanishing Canonical Class (1957).- E. Calabi, Construction and Properties of Some 6-Dimensional Almost Complex Manifolds (1958).- E. Calabi, Improper Affine Hyperspheres of Convex Type and a Generalization of a Theorem by K. Jörgens (1958).- E. Calabi, An Extension of E. Hopf’s Maximum Principle with an Application to Riemannian Geometry (1958).- E. Calabi, Errata: An Extension of E. Hopf’s Maximum Principle with an Application to Riemannian Geometry (1959).- E. Calabi, E. Vesentini, Sur les variétés complexes compactes localement symétriques (1959).- E. Calabi, E. Vesentini, On Compact, Locally Symmetric Kähler Manifolds (1960).- E. Calabi, On Compact, Riemannian Manifolds with Constant Curvature I. (1961).- E. Calabi, L. Markus Relativistic Space Forms (1962).- E. Calabi, Linear Systems of Real Quadratic Forms (1964).- E. Calabi, Quasi-Surjective Mappings and a Generalization of Morse Theory (1966).- E. Calabi, Minimal Immersions of Surfaces in Euclidean Spheres (1967).- E. Calabi, On Ricci Curvature and Geodesics (1967).- E. Calabi, On Differentiable Actions of Compact Lie Groups on Compact Manifolds (1968).- E. Calabi, An Intrinsic Characterization of Harmonic One-Forms (1969).- E. Calabi, On the Group of Automorphisms of a Symplectic Manifold (1970).- E. Calabi, P. Hartman, On the Smoothness of Isometries (1970).- E. Calabi, Examples of Bernstein Problems for Some Nonlinear Equations (1970).- E. Calabi, Über singuläre symplektische Strukturen (1971).- E. Calabi, Complete Affine Hyperspheres I (1972).- E. Calabi, A Construction of Nonhomogeneous Einstein Metrics (1975).- E. Calabi, H. S. Wilf, On the Sequential and Random Selection of Subspaces Over a Finite Field (1977).- E. Calabi, Métriques kählériennes et fibrés holomorphes (1978).- E. Calabi, Isometric Families of Kähler Structures (1980).- E. Calabi, Géométrie différentielle affine des hypersurfaces (1981).- E. Calabi, Linear Systems of Real Quadratic Forms II (1982).- E. Calabi, Extremal Kähler Metrics (1982).- E. Calabi, Hypersurfaces with Maximal Affinely Invariant Area (1982).- E. Calabi, Extremal Kähler Metrics II (1985).- E. Calabi, Convex Affine Maximal Surfaces (1988).- E. Calabi, Affine Differential Geometry and Holomorphic Curves (1990).- E. Calabi, J. Cao Simple Closed Geodesics on Convex Surfaces (1992).- F. Beukers, J. A. C. Kolk and E. Calabi, Sums of Generalized Harmonic Series and Volumes (1993).- E. Calabi and H. Gluck, What are the Best Almost-Complex Structures on the 6-Sphere? (1993).- E. Calabi, Extremal Isosystolic Metrics for Compact Surfaces (1996).- E. Calabi, P. J. Olver, A. Tannenbaum, Affine Geometry, Curve Flows, and Invariant Numerical Approximations (1996).- J.-P. Bourguignon, E. Calabi, J. Eells, O. Garcia-Prada, M. Gromov, Where Does Geometry Go? A Research and Education Perspective (2001).- E. Calabi, X. Chen, The Space of Kähler Metrics II (2002).- Acknowledgements. </p><p><br></p><p></p><p></p>