Einführung in die Theorie der Speziellen Funktionen der Mathematischen Physik

Specificaties
Paperback, blz. | Duits
Springer Berlin Heidelberg | 0e druk, 2012
ISBN13: 9783642948688
Rubricering
Springer Berlin Heidelberg 0e druk, 2012 9783642948688
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Das vorliegende Buch ist zum Teil aus Vorlesungen entstanden, die ich in den vergangenen zehn Jahren an verschiedenen Universitaten gehalten habe. Es verdankt daneben viel einer intensiven Beschaftigung auch mit den hOheren speziellen Funktionen, 'lor allem dem Bemtihen, fur ihre Untersuchung eine solide mathematische Grundlage zu schaffen. So ist mit dieser EinfUhrung ein Werk entstanden, das versucht, die Theorie der behandelten Funktionen mit dem Blick auf das mathematisch Wesentliche zu erfassen, den Zugang zu ihnen zu vereinfachen, ihre Vielfalt zu uberschauen und zu beherrschen. Ich habe die Hoffnung, daB die Theorie so auch fUr den, der diese Funktionen nicht als Gegen­ stand rein mathematischer Betrachtungen ansehen kann, sondem sie als Hilfsmittel benatigt, etwas gewonnen hat. Zu besonderem Dank bin ich verpflichtet Fraulein K. KAPPES fUr die sorgfaltige Reinschrift des Manuskripts, meinen Mitarbeitem R. EBERT und A. SCHNEIDER fUr die groBe Muhe einer kritischen Durchsicht, Herm A. SCHNEIDER insbesondere fUr die gewissenhafte Unterstutzung bei der Korrektur. Dem Verlage schlieBlich gilt mein Dank fUr sein Verstandnis bei mancher Verzagerung der Fertigstellung und fUr die vorzugliche Ausstattung des Buches. F. W. SCHAFKE KaIn, im Juni 1963 Inhaltsverzeichnis Seite Einleitung I 1. Grundlagen 7 I. I. Die Schwingungsgleichung 7 I. I I. grad, div, LI in orthogonalen Koordinatensystemen. 7 I. I 2. Orthogonalinvarianz. . . . . . . . 13 I. I 3. Bedeutung der Schwingungsg\eichung 16 1. I 4. Separation der Schwingungsgleichung 17 1.2. Funktionentheoretische Hilfsmittel . 23 1.3. Die Laplace-Transformation ..... . 29 2. Die GammaCunktion . . . . . . . . . . .

Specificaties

ISBN13:9783642948688
Taal:Duits
Bindwijze:paperback
Uitgever:Springer Berlin Heidelberg
Druk:0

Inhoudsopgave

1. Grundlagen.- 1.1. Die Schwingungsgleichung.- 1.11. grad, div, ? in orthogonalen Koordinatensystemen.- 1.12. Orthogonalinvarianz.- 1.13. Bedeutung der Schwingungsgleichung.- 1.14. Separation der Schwingungsgleichung.- 1.2. Funktionentheoretische Hilfsmittel.- 1.3. Die Laplace-Transformation.- 2. Die Gammafunktion.- 2.1. Definition und einige Haupteigenschaften.- 2.2. Charakterisierung durch Funktionalgleichung und logarithmische Konvexität. Folgerungen.- 2.3. Die Darstellung von ??(z) als Laplace-Integral. Die asymptotische Reihe für log ?(z+1).- 2.4. Die Hankeische Integraldarstellung für die reziproke Gammafunktion und Verwandtes.- 3. Die Zylinderfunktionen.- 3.1. Integralrelationen.- 3.2. Die Bessel-Funktionen ganzer Indizes.- 3.3. Die Bessel-Funktionen beliebiger Indizes.- 3.4. Hankel-Funktionen und Neumannsche Funktion. Asymptotische Reihen für x??.- 3.5. Rekursionsformeln.- 3.6. Wronskische Determinanten.- 3.7. Das (ebene) Additionstheorem.- 3.8. Laplace-Transformation von Bessel-Funktionen.- 3.9. Jv+n(x) und Jv+n((v+n)x) als Eigenfunktionen.- 4. Die hypergeometrische Funktion. Grundlagen.- 4.1. Differentialgleichung und Reihe.- 4.2. Integraldarstellungen.- 4.3. Lineare Transformationen.- 4.4. Quadratische Transformationen.- 4.5. „Verallgemeinerte Kugelfunktionen“.- 5. Kugelfunktionen.- 5.1. Allgemeines.- 5.11. Integralrelationen.- 5.12. Darstellung von Kugelfunktionen durch hypergeometrische Funktionen.- 5.2. Die Legendreschen Polynome.- 5.21. Definition. Erste Folgerungen.- 5.22. Darstellungen derPn(x) durch die hypergeometrische Funktion.- 5.23. Die Orthogonalität derPn(x).- 5.3. Die Funktionen $$P_n^m (x)\,(m = 0,\,1,\,...;\,n = m,\,m + 1,\,m + 2,\,...)$$.- 5.31. Definition. Orthogonalität.- 5.32. Darstellungen der $$P_n^m (x)$$ durch die hypergeometrische Funktion.- 5.33. Bedeutung für die Schwingungsgleichung.- 5.34. Elementare Integraldarstellungen.- 5.4. Die Funktionen $$Q_n^m (x)\,(m = 0,\,1,\,2,\,...;\,n = m,\,m + 1,\,m + 2,\,...)$$.- 5.41. Die Funktionen $$Q_n (x)\,(n = 0,\,1,\,2,\,...)$$.- 5.42. Die Funktionen $$Q_n^m (x)$$.- 5.5. Die Kugelflächenfunktionen.- 5.51. Kugelflächenfunktionen. Harmonische Polynome.- 5.52. Die Laplacesche Reihe. Das Additionstheorem.- 5.53. Entwicklungen von Lösungen der Schwingungs- bzw. Potentialgleichung.- 5.6. Kugelfunktionen zu beliebigen Indizes.- 5.61. Die Funktionen Dvµ(x). Definition. Reihen.- 5.62. Die Funktionen Bvµ (x) Definition. Reihen.- 5.63. Integraldarstellungen.- 5.64. Zusammenhangsformeln.- 5.65. Die Funktionen Dvµ, Pvµ, Qvµ.- 5.66. Wronskische Determinanten.- 5.7. Rekursionsformeln.- 5.8. Kugelfunktionen als Eigenfunktionen.- 5.81. Umlaufsforderung um ?.- 5.82. Umlaufsforderung um +1.- 5.9. Die Polynome von GEGENBAUER.- 6. Konfluente hypergeometrische Funktionen.- 6.1. Kummersche Differentialgleichung und Reihe. Transformationsformeln.- 6.2. Die Whittakersche Differentialgleichung.- 6.3. Integraldarstellungen.- 6.4. Einige Spezialfälle.- 6.5. Asymptotische Reihen (x groß). Zusammenhangsformeln.- 6.6. Rekursionsformeln.- 6.7. Whittakersche Differentialgleichung: Wronskische Determinanten und Orthogonalität.- 6.8. Whittakersche Funktionen als Eigenfunktionen.- 7. Die „F-Gleichung“.- 7.1. Reduktion von Differentialrekursionsformeln auf die „F-Gleichung“.- 7.2. Reihenentwicklungen.- 7.3. Differentialformeln.- 7.4. Integralrelationen.- 8. Biorthogonalentwicklungen analytischer Funktionen.- 8.1. Ein allgemeines Prinzip zur Gewinnung von Entwicklungssätzen und asymptotischen Aussagen.- 8.11. Grundvoraussetzungen.- 8.12. Erste Folgerungen.- 8.13. Entwicklungssatz.- 8.14. Asymptotische Aussagen.- 8.15. Verschärfung des Entwicklungssatzes.- 8.16. Bemerkung zu den Voraussetzungen über z0, z1.- 8.17. Bemerkung zu den Annahmen (I) bis (V).- 8.2. Reihen nach Bessel-Funktionen.- 8.21. Entwicklungen nach den Funktionen Jv+n(x) (Neumannsche Reihen erster Art).- 8.22. Entwicklungen nach den Funktionen Jv+n((v+n)x) (Kapteynsche Reihen).- 8.23. Entwicklungen nach den Funktionen xv+nJv+n(x).- 8.24. Entwicklungen nach den Funktionen Jv+n(x) Jµ+n(x) (Neumannsche Reihen zweiter Art).- 8.241. Zur Gewinnung der Differentialgleichung.- 8.242. Eigenwertprobleme für Produkte von Zylinderfunktionen.- 8.243. Zurückführung auf 8.1.- 8.3. Reihen nach Whittakerschen Funktionen.- 8.31. Entwicklungen nach den Funktionen Mx,µ+n(x).- 8.32. Entwicklungen nach Produkten Whittakerscher Funktionen.- 8.33. Entwicklungen nach den Funktionen xv+n?(a+v+n, 1+v+n; x) und xv+n?(a, 1+v+n; x).- 8.4. Entwicklungen nach Kugelfunktionen.- 8.41. Entwicklungen nach den Funktionen Dv+nµ(x).- 8.42. Entwicklungen nach den Funktionen Bv-µ-2n(x).- 8.5. Entwicklungen nach hypergeometrischen Funktionen.- 8.51. Entwicklungen nach den Funktionen xv+nF(a+v+n, b+v+n; 1+v+n; x) bzw. $$(\frac{x}{{1 - x}})^{v + n} F(a,\,b;\,1 + v + n;\,x)$$.- 8.52. Entwicklungen nach „verallgemeinerten Kugelfunktionen“ Dv+nµ, x(x).- 8.6. Asymptotische Formeln.- 8.7. Bemerkung zu den Entwicklungssätzen.- Literaturhinweise.

Rubrieken

    Personen

      Trefwoorden

        Einführung in die Theorie der Speziellen Funktionen der Mathematischen Physik