Division J Applied Airfoil Theory.- Editor’s Preface.- I. General properties of the wing.- 1. Lift and Moment.- 2. Resistance (Drag) of the Airfoil.- 3. Maximum Lift.- 4. Artificial Methods for Increasing the Maximum Lift.- 5. The Slotted Wingp.- 6. Suction of the Boundary Layer.- 7. Rotating Cylinder.- 8. Effect of the Drag on Deviations From the Theoretical Lift.- 9. Distribution of Pressure.- 10. Control of the Pressure Distribution by Suitable Choice of the Profile Shape of an Airfoilp.- II. Properties of typical profiles.- 1. Thin Flat Plates.- 2. Thin Plates in the Form of Circular Arcs.- 3. Thin Plates with Arbitrary Curvature.- 4. Profiles of Finite Thickness.- 5. The Characterization of Profiles of General Form.- 6. Results of Experimental Observations on Airfoilsp.- III. Airfoils or Wings of Finite Span.- A. Single Wing-Monoplane.- 1. General Phenomena.- 2. Minimum Values.- 3. Calculations of the Change in Drag Produced by Change of Aspect Ratio.- 4. Influence of the Aspect Ratio on Wing Perfomance.- 5. Influence of the Contour.- 6. Wings with Gaps, Longitudinal Slots or other Disturbing Factors.- 7. Wings of Large Chordp.- B. Combination of Wings.- 8. Preliminary Remarks.- 9. Stability of Wings Arranged in Tandem.- 10. Measures for Obtaining Stability.- 11. The Induced Field in Front of and Behind a Wing; Theory.- 12. Experimental Values Characterizing the Downwash Behind Wings.- 13. Wing and Tail-Plane.- 14. Wing and Flap, Fixed and Control Surface.- 15. Biplanep.- IV. Unsymmetrical and Non-Steady Types of Motion.- 1. Preliminary Remarks.- A. Side-Sli.- 2. Side-Slip of a Simple Rectangular Wing.- 3. The Forces and Moments on a Wing with Dihedral in Side-Slip.- 4. Influence of Sweepbaek in Side-Slip.- 5. Effect of Side-Slip on an Airplanep.- B. Phenomena Associated with Rotations of the Wing.- 6. Preliminary Survey.- 7. Pitching Moment Due to Pitching.- 8. Rolling Moment Due to Rolling and Autorotation.- 9. Stalled Flight and Normal Spin.- 10. Flat Spin.- 11. Influence of Wing Profile on the Tendency Toward Autorotation.- 12. Influence of the Wing Contour on the Tendency to Autoration.- 13. Influence of the General Arrangement of the Airplane Parts on the Tendency to Autoration.- 14. Yawing Moment Due to Yawing.- 15. Rolling Moment Due to Yawing.- 16. Yawing Moment Due to Rolling.- 17. Effect of Ailerons.- 18. The Working of the Vertical Tail Structure (Rudder and Fin).- 19. Lateral Stability.- Division K Airplane Body (Non-Lifting System) Drag and Influence on Lifting System.- Editor’s Preface.- I. Drag of the Body.- 1. Introduction.- 2. The Ideal Fuselage.- 3. Scale Effect.- 4. Actual Airplane Body.- II. Parasitic Resistances.- 1. Drag Due to Various Parts of the Structure.- 2. Drag of Landing Gear and Floats.- III. Influence of the Airplane Body on the Wings.- 1. Theoretical Development for Long Bodies.- 2. Theoretical Development for Short Bodies and Engine Nacelles.- 3. Experimental Results.- Division L Airplane Propellers.- Editor’s Preface.- I. Airscrew Theory.- 1. Introduction.- 2. Non-Dimensional Coefficients.- 3. Airscrew Design.- 4. The Development of Airscrew Theory.- II. The Axial Momentum Theory.- 1. The Rankine-Froude Theory.- 2. The Momentum Equation.- 3. The Ideal Efficiency of a Propeller.- III. The General Momentum Theory.- 1. General Equations.- 2. Constant Circulation.- 3. Approximate Solution.- 4. Minimum Loss of Energy.- 5. Constant Efficiency.- IV. Propeller Efficiency.- 1. The Energy Equation.- 2. Approximate Solution.- 3. Propeller Efficiency.- 4. Numerical Results.- V. The Blade Element Theory.- 1. The Primitive Blade Element Theory.- 2. Efficiency of the Blade Element.- 3. Blade Interference.- 4. The Vortex System of a Propeller.- 5. The Induced Velocity.- 6. The Airfoil Characteristics.- 7. Multiplane Interference.- 8. Cascade of Airfoils.- 9. Airfoil Characteristics in a Cascade.- VI. The Vortex Theory.- 1. The Propeller Blades.- 2. Energy and Momentum.- 3. Propeller Characteristics.- 4. The Application of the Vortex Theory.- 5. The Effect of Solidity and Pitch.- 6. Approximate Method of Solution.- 7. Effective Aspect Ratio of the Blades.- VII. Propellers of Highest Efficiency.- 1. Minimum Loss of Energy.- 2. Lightly Loaded Propellers.- 3. The Effect of Profile Drag.- 4. The Effect of Number of Blades.- 5. Applications of Prandtl’s Formula.- VIII. Body and Wing Interference.- 1. Propeller Characteristics.- 2. Propeller-Body Interference.- 3. Analysis of Apparent Thrust and Drag.- 4. Experimental Results.- 5. Apparent Thrust and Efficiency.- 6. Propeller Behind a Body.- 7. Propeller-Wing Interference.- IX. The Experimental Study of Propellers.- 1. Experimental Methods.- 2. Wind Tunnel Interference.- 3. Thrust and Torque Distribution.- 4. Scale Effect.- 5. Compressibility Effect.- X. Helicopter Airscrews.- 1. Introduction.- 2. The Ideal Helicopter.- 3. The Effect of Profile Drag.- 4. Blade Element Theory.- 5. Horizontal Motion.- 6. Rigid Airscrew.- 7. Periodic Variation of the Blade Angle.- XI. Windmills and Fans.- 1. Types of Windmill.- 2. The Ideal Windmill.- 3. Windmill Characteristics.- 4. The Lifting Windmill.- 5. Windmill Anemometer.- 6. Fans.- XII. Miscellaneous Airscrew Problems.- 1. Tandem Propellers.- 2. Propeller with Stalled Blades.- 3. Drag at Zero Torque.- 4. The Vortex Ring State of an Airscrew.- 5. The Effect of Sideslip and Pitching.- 6. Downwash Behind a Propeller.- Division M Influence of the Propeller on Other Parts of the Airplane Structure.- Preface.- I. Development of Theoretical Aspects of the Problem.- A. Introduction.- 1. The Problems to be Discussed.- 2. Coordinates and General Notations.- B. The Flow Around a Propeller in the Absence of Other Bodies.- 3. The “Ideal Propeller”.- 4. The Flow Around the Ideal Propeller. General Solution.- 5. The Flow Around the Ideal Propeller. Approximate Solution.- 6. Numerical Values.- 7. Experimental Results.- 8. Influence of the Simplifying Assumptions.- 9. Influence of the Simplifying Assumptions (Continued).- C. The Influence of the Propeller on the Wing System.- 10. Introduction.- 11. Statement of Problem.- 12. General Assumptions.- 13. Some General Definitions.- 14. General Discussion of the Problem.- 15. The Superposition of Potentials with Singularities.- 16. Conditions at the Boundary of the Slipstream: General Form.- 17. Conditions at the Boundary of the Slipstream: Special Form.- 18. Determination of the Additional Mow.- 19. Determination of the Additional Flow (Continued).- 20. Method of Images (Introduction).- 21. Method of Images (Vortex Outside).- 22. Method of Images (Vortex Inside; Summary of Results).- 23. The Equation for the Change in Circulation. General Form.- 24. The Equation for the Change in Circulation. Special Form.- 25. The Equation for the Change in Circulation. Special Form (Continued).- 26. The Changes in Lift, Drag and Pitching Moment.- II. Applications of Theory and Experimental Results.- A. Application to Influence on Wing.- 1. General Method of Solution for the Wing of Finite Span.- 2. The Wing in Front of the Propeller Plane.- 3. The Wing Behind the Propeller Plane and Outside the Slipstream Boundary.- 4. The Wing of Infinite Span Crossing the Slipstream Boundary.- 5. The Wing of Infinite Span Crossing the Slipstream Boundary (Continued).- 6. The Wing of Infinite Span Crossing the Slipstream Boundary (Continued).- 7. The Wing of Infinite Span Crossing the Slipstream Boundary. Numerical Results.- 8. The Wing of Finite Span Crossing the Slipstream Boundary.- 9. Summary of the Results for the Wing of Finite Span.- 10. Experimental Results.- B. Interference Effects on Wings not Covered by the Theory of I C.- 11. Introduction.- 12. Effects Not Connected with Separation.- 13. The Influence of the Propeller on Separation.- C. Influence of Propeller on Remaining Parts of Structure.- 14. Introduction.- 15. The Influence of the Propeller on Stability and Controllability.- 16. The Influence of the Propeller on Stability and Controllability (Continued).- 17. Miscellaneous Questions.