1. Introduction.- References.- 2. Electronic Band Structure of Graphite Intercalation Compounds.- 2.1 Methods for Band Structure Calculations.- 2.2 Graphite.- 2.2.1 General Features.- 2.2.2 Electronic Band Structure.- 2.3 Electronic Band Structures of Low-Stage Graphite Intercalation Compounds.- 2.3.1 General Features.- 2.3.2 Lithium Graphite Intercalation Compounds.- 2.3.3 Alkali and Alkaline Earth-Metal Graphite Intercalation Compounds.- 2.3.4 Ternary Graphite Intercalation Compounds.- 2.4 Electronic Band Structure of High-Stage Graphite Intercalation Compounds.- 2.4.1 General Features.- 2.4.2 First-Principles Calculations.- 2.4.3 Parametrized Models.- 2.5 Summary and Conclusions.- References.- 3. Electron Spectroscopy of Graphite Intercalation Compounds.- 3.1 Essential Concepts.- 3.1.1 Pure Graphite as a Host for Intercalation.- 3.1.2 The Charge Transfer Problem.- 3.1.3 Concepts of Charge Transfer.- 3.2 The Situation in the Literature.- 3.2.1 Charge Transfer in Theories of KC8.- 3.2.2 The Charge Transfer Problem in Spectroscopic Experiments.- (a) Soft X-Ray Emission Spectroscopy (SXS).- (b) Photoelectron Spectroscopy.- (c) Valence Band Spectroscopy.- (d) Angle-Resolved UPS.- (e) Core-Level Spectroscopy.- 3.3 Principal Results for the Electronic Structure.- 3.3.1 The Typical Photoelectron Spectrum.- 3.3.2 Fermi-Level Shift — UPS Results.- 3.3.3 Lineshape of Core-Level Spectra.- 3.3.4 Shifts in Core-Level Spectra of GICs.- 3.4 Photoemission from Acceptor GICs.- 3.4.1 Experimental Details.- 3.4.2 Surface Halogenation.- 3.4.3 Valence-Band Information.- 3.5 Summary and Conclusions.- References.- 4. Effects of Charge Transfer on the Optical Properties of Graphite Intercalation Compounds.- 4.1 Experimental Considerations.- 4.1.1 Optical Measurement of Air-Sensitive Compounds.- 4.1.2 Optical Reflectance Spectroscopy.- 4.1.3 Raman Spectroscopy.- 4.2 Deducing Charge Transfer from Optical Studies.- 4.2.1 The Relationship Between the Optical Reflectance, Dielectric Function, and Electronic Band Structure of GICs.- 4.2.2 Electronic Band Structure Models.- (a) The K-Point Tight-Binding Model of Blinowski and Rigaux.- (b) LCAO Model of Holzwarth.- (c) Tight-Binding Model of Saito and Kamimura.- 4.2.3 Charge Transfer and Graphitic Intralayer Phonon Frequencies.- 4.3 Experimental Results and Discussion.- 4.3.1 Donor-Type GICs.- (a) Potassium GICs.- (b) Potassium-Hydrogen GICs.- (c) Potassium-NH3 and Potassium-THF GICs.- (d) Cesium-Bismuth and Potassium-Mercury GICs.- 4.3.2 Acceptor-Type GICs.- (a) Sulfuric Acid GICs.- (b) Metal-Chloride GICs.- (c) Fluorine and Metal-Fluoride GICs.- 4.4 Summary and Conclusion.- References.- 5. Superconductivity of Graphite Intercalation Compounds.- 5.1 Superconductivity of C8M (M= K, Rb, Cs).- 5.2 Superconductivity of Binary Intercalants.- 5.2.1 Superconductivity of Potassium Hydride GICs, C4nKH.- 5.2.2 Superconductivity of GICs of Alkali-Metal Amalgams, C4nMHg.- 5.2.3 Superconductivity of Alkali-Metal Thallide and Bismuthide GICs.- 5.2.4 Pressure Dependence of the Anisotropy of Superconductivity.- 5.3 Theoretical Aspects of the Origin of Superconductivity in GICs.- References.- 6. Transport Properties of Metal Chloride Acceptor Graphite Intercalation Compounds.- 6.1 The In-Plane Electrical Resistivity.- 6.1.1 General Considerations.- 6.1.2 Ideal Electrical Resistivity.- 6.1.3 Residual Electrical Resistivity.- 6.1.4 Two-Dimensional Localization and Interaction Effects.- 6.1.5 Electrical Conductivity and Charge Transfer.- 6.2 The In-Plane Thermal Conductivity.- 6.2.1 Electronic Thermal Conductivity.- 6.2.2 Lattice Thermal Conductivity.- 6.2.3 Separation of the Electronic and Lattice Contributions.- 6.2.4 The Extra Contribution due to the Intercalate.- 6.3 The In-Plane Thermoelectric Power.- 6.3.1 Experimental Results.- 6.3.2 Mechanisms for Thermoelectric Power Generation in Solids.- (a) Diffusion Thermoelectric Power.- (b) Phonon-Drag Thermoelectric Power.- 6.3.3 Discussion of the GIC Results.- 6.4 c Axis Transport and Anisotropy.- 6.4.1 c Axis Electrical Resistivity.- 6.4.2 c Axis Thermal Conductivity and Thermoelectric Power.- 6.4.3 Anisotropy and Dimensionality.- 6.5 Transport in Magnetic GICs.- 6.5.1 Electrical Resistivity.- 6.5.2 Thermal Conductivity.- 6.5.3 Thermoelectric Power.- 6.6 Concluding Remarks.- References.- 7. Magnetic Intercalation Compounds of Graphite.- 7.1 Background.- 7.1.1 Theoretical Considerations.- 7.1.2 Magnetism in Layered Compounds.- (a) Comparison of Magnetic Superlattices.- (b) Magnetic Intercalation into Various Hosts.- 7.1.3 Structure of Magnetic Graphite Intercalation Compounds.- (a) Structure of Acceptor Compounds.- (b) Structure of Donor Compounds.- 7.2 Origin of Magnetic Interactions.- 7.2.1 Magnetic Hamiltonians for Acceptor Compounds.- (a) Magnetic Hamiltonian for NiCl2 GICs.- (b) Magnetic Hamiltonian for CoCl2 GICs.- (c) Magnetic Hamiltonian for MnCl2 GICs.- 7.2.2 Magnetic Hamiltonian for Donor Compounds.- 7.2.3 The 2D-XY Model: Theoretical Considerations.- 7.3 Experimental Techniques for Studying GICs.- 7.3.1 Magnetic Susceptibility.- 7.3.2 Magnetization.- 7.3.3 Heat Capacity.- 7.3.4 Neutron Scattering.- 7.3.5 Electrical Resistivity and Magnetoresistance.- 7.3.6 Thermal Transport.- 7.3.7 Electron-Spin Resonance.- 7.3.8 Nuclear Magnetic Resonance.- 7.3.9 Mössbauer Spectroscopy.- 7.3.10 Other Techniques.- 7.4 Overview of Magnetic GICs.- 7.4.1 Overview of Acceptors.- (a) NiCl2 GICs.- (b) CoCl2 GICs.- (c) MnCl2 GICs.- (d) FeCl3 GICs.- (e) FeCl2 GICs.- (f) CuCl2 GICs.- (g) CrCl3 GICs.- (h) MoCl5 GICs.- (i) Fluoride Compounds.- (j) Bromide Compounds.- (k) Bi-Intercalation Compounds.- (l) Magnetic Alloys and Dilution Compounds.- 7.4.2 Overview of Donors.- (a) The Magnetic Donor C6Eu.- (b) Other Donors.- 7.5 Summary.- References.- 8. Intercalation of Graphite Fibers.- 8.1 Precursor Graphite Fibers.- 8.2 Intercalation.- 8.3 Structure and Staging.- 8.4 Raman Characterization.- 8.5 Transport Properties.- 8.5.1 Electrical Conductivity.- 8.5.2 Stability Issues.- 8.5.3 Magnetoresistance.- 8.5.4 Weak Localization Effects.- 8.5.5 Thermal Transport Properties.- 8.5.6 Thermopower.- 8.6 Mechanical Properties.- 8.7 Thermal Expansion.- 8.8 Applications of Intercalated Carbon Fibers.- 8.9. Summary and Conclusions.- References.