1. Progress in the Physics of Magnetism in the Past Forty-five Years.- 1.1 Magnetism of 3d Transition Metals and Alloys.- 1.2 Magnetism of Rare Earth Metals and Alloys.- 1.3 Magnetism of Ferrimagnetic Oxides.- 1.4 Observation of Ferromagnetic Domains.- 1.5 Experimental Techniques and Environments.- 1.6 Engineering Applications of Magnetic Materials.- 1.7 Conclusions.- References.- 2. Generation of Megagauss Magnetic Fields and Their Application to Solid State Physics.- 2.1 Various Techniques for Generating Ultra-high Magnetic Fields.- 2.2 Electromagnetic Flux-Compression.- 2.3 Single-Turn Coil Technique.- 2.4 Magnetism Experiments in Megagauss Fields.- 2.4.1 Faraday Rotation and Magnetization.- 2.4.2 Magnetization in Dilute Magnetic Semiconductors.- 2.4.3 Spin-Flip Transitions.- 2.4.4 Magnetization Measurements.- 2.4.5 Upper Critical Field of High Tc Superconductors.- References.- 3. Magnetism in Metals and Alloys Studied by Neutron Scattering.- 3.1 Significance of Neutron Scattering for the Study of Magnetism.- 3.2 Studies of Antiferromagnetic Metals with Elastic Scattering.- 3.3 Ferromagnetic Metals Studied by Inelastic Scattering.- 3.4 Spin Dynamics in Localized Spin Systems.- 3.5 Spin Dynamics in Itinerant Electron Systems.- 3.6 Spin Dynamics in Quasi-Localized Spin Systems.- 3.7 Dynamic Behavior of Invar Alloys.- 3.8 Epilogue — The Magnetism of Fe and Ni.- Addendum.- References.- 4. Magnetic Properties of 3d Compounds with Special Reference to Pyrite Type Compounds.- 4.1 General Survey of 3d Magnetic Compounds.- 4.2 Experimental Results.- 4.2.1 Physical Properties.- 4.2.2 Phase Diagram Constructed from Substitutions.- 4.2.3 Metal-Insulator Transition of Ni(S1?xSex)2.- 4.2.4 Spin Structure of NiS2 and Its Weak Ferromagnetism.- 4.2.5 Effect of Nonstoichiometry in NiS2.- 4.2.6 Metamagnetism of Co(S1?xSex)2.- 4.2.7 Paramagnetic Susceptibility and Electrical Resistivity of Co(S1?xSex)2.- 4.3 Theoretical Interpretation.- 4.3.1 Electronic Structure.- 4.3.2 Interpretation of the Phase Diagram.- 4.3.3 Spin Structure and Weak Ferromagnetism Caused of NiS2 by Four-Body Exchange Interactions.- 4.3.4 Metamagnetism of Co(S1?xSex)2 in the Itinerant Electron Model.- 4.3.5 Magnetic Susceptibility and Electrical Resistivity of Co(S1?xSex)2.- References.- 5. Invar Systems.- 5.1 Magnetovolume Effects.- 5.2 Invar Type Alloys.- 5.2.1 Transition Metal Alloys.- 5.2.2 Rare Earth — Transition Metal Intermetallic Compounds.- 5.2.3 Actinide Intermetallic Compounds.- 5.3 Elasticity.- 5.4 Conclusions.- References.- 6. Magnetic Anisotropy and Magnetostriction.- 6.1 Magnetocrystalline Anisotropy.- 6.2 Magnetostriction.- 6.3 Representative Materials and Topics.- 6.3.1 Iron-Group Transition Metals and Alloys.- 6.3.2 Rare-Earth Metals and Alloys.- 6.4 Realization of High Magnetic Permeability. “The Focus of Zero” in Magnetic Anisotropy and Magnetostriction.- 6.5 Induced Magnetic Anisotropy. How to Control the Shape of Magnetization Curves.- 6.5.1 Magnetic Annealing Effect.- 6.5.2 Roll Magnetic Anisotropy.- References.- 7. The Intermediate Field Between Pure and Applied Magnetism. Importance of Accurate Measurements of Magnetization Curves.- 7.1 Technical Terms and Figures.- 7.2 Estimation of Saturation Magnetization and Curie Temperatures.- 7.3 Magnetic Anisotropy.- 7.3.1 Problems in the Methods of Obtaining Magnetic Anisotropy from Magnetization Curves.- 7.3.2 Sign Reversal in Magnetocrystalline Anisotropy.- 7.4 Magnetostriction and Magneto-elastic Energy.- 7.5 Spin Glasses, Hopkinson Effect and the Invar Problem.- 7.6 The Problem of Communication Between Applied Researchers and Those in the “Intermediate Fields” or in Basic Research.- 7.7 Conclusion.- References.- 8. Amorphous Magnetic Materials.- 8.1 Magnetization and Temperature Dependence of Amorphous Magnetic Materials.- 8.1.1 Amorphous Ferromagnetic Alloys.- 8.2 Magnetic Anisotropy.- 8.2.1 Macroscopic Magnetic Anisotropy.- 8.2.2 Microscopic Local Magnetic Anisotropy.- 8.3 Magnetism, Preparation Conditions and Structural Relaxation of Amorphous Alloys.- References.- 9. Amorphous Magnetic Alloy Ribbons and Their Applications.- 9.1 Materials.- 9.1.1 Preparation Methods.- 9.1.2 Classification of Amorphous Magnetic Alloys.- 9.1.3 Characteristics and Shortcomings.- 9.1.4 Various Heat Treatments.- 9.2 Applications.- References.- 10. Magneto-optical Recording.- 10.1 Principles of Recording, Reproducing and Erasing.- 10.2 Requirements for Recording Media.- 10.3 Recording Media.- 10.4 Dynamic Read Write Properties.- 10.5 Applications and Other Technologies.- References.- 11. Magnetic Bubble Memories. Solid State File Utilizing Micro Magnetic Domains.- 11.1 Physics of Magnetic Bubbles.- 11.1.1 Stability of Magnetic Bubbles.- 11.1.2 Domain Wall Structure of a Magnetic Bubble.- 11.1.3 The Motion of a Magnetic Bubble.- 11.2 Magnetic Bubble Materials.- 11.2.1 Requirements for Magnetic Bubble Materials.- 11.2.2 Fabrication and Magnetic Properties of Garnet Films.- 11.2.3 Suppression of Hard Magnetic Bubbles.- 11.3 Magnetic Bubble Devices.- 11.3.1 Outline of Devices.- 11.3.2 Permalloy Devices.- 11.3.3 Ion Implanted Devices.- 11.4 Magnetic Bubble Memories and Applications.- 11.4.1 Memory Modules and Drive Circuits.- 11.4.2 Magnetic Bubble Memories.- 11.4.3 Applications of Magnetic Bubble Memories.- 11.5 Future Trends of Magnetic Bubble Devices and Memories.- 11.6 Summary.- References.- 12. High Density Magnetic Recording. Recent Developments in Magnetic Tapes, Discs and Heads.- 12.1 Physics of Magnetic Recording.- 12.1.1 Recording Process.- 12.1.2 The Reproduction Process.- 12.2 Magnetic Tapes and Discs.- 12.2.1 Magnetic Powders for Particulate Media.- 12.2.2 Thin Film Media.- 12.2.3 Perpendicular Recording Media.- 12.3 Magnetic Heads.- 12.4 Future Trends.- References.- 13. Magnetic Domains Observed by Electron Holography.- 13.1 Principles of Electron Holography.- 13.2 Principles of Domain Structure Observation.- 13.3 Applications of Magnetic Domain Structure Observation.- 13.4 Summary.- References.- Appendix: Notes on Technical Terms.