I. Insulin.- 1 Insulin Chemistry.- A. Introduction.- B. Analysis, Purification.- I. HPLC.- II. Isolation.- III. Degradation.- IV. Stability.- C. Chemical and Enzymatic Modification, Semisynthesis.- I. Modification of Amino Groups and NH2 Terminal Semisyntheses.- II. Hydroxy Amino Acids.- III. COOH Terminal Shortening and Semisynthesis.- IV. Other Semisyntheses.- V. Labeling.- VI. Photoreactive Insulins.- VII. Cross-linking.- D. Chemical Synthesis of Insulin Analogs.- I. Synthesis of A Chains.- II. Synthesis of B Chains.- III. Chain Combination.- IV. Syntheses of Related Molecules.- E. Biosynthesis by Recombinant DNA Techniques.- I. Human Insulin.- II. Analogs.- F. Conclusions.- References.- 2 Insulin Structure.- A. Introduction.- B. The Three-Dimensional Structure of the Insulin Molecule.- I. The Insulin Monomer.- II. The Insulin Dimer.- III. The Insulin Hexamer.- C. Structural Variation in the Insulin Molecule.- D. Conclusions.- References.- 3 Mutant Human Insulins and Insulin Structure-Function Relationships.- A. Introduction.- B. Structural Relationships Within the Human Insulin Gene and its Expressed Products.- C. Abnormal Insulin Gene Products.- I. Mutant Human Proinsulins and Processing Intermediates.- II. Mutant Human Insulins.- D. Insulin Structure-Function Relationships and Mutant Insulins.- I. Substitutions at Position A3 (Insulin Wakayama).- II. Substitutions at Position B24 (Insulin Los Angeles).- III. Substitutions at Position B25 (Insulin Chicago).- E. Physiology, Genetics, and Clinical Aspects.- F. Concluding Remarks.- References.- II. Biosynthesis, Secretion, and Degradation.- 4 The Biosynthesis of Insulin.- A. Introduction.- B. Insulin Precursors.- I. Preproinsulin: Its Role in Insulin Biosynthesis.- II. Structure and Properties of Proinsulin.- III. Proinsulin is the Immediate Precursor of Insulin.- C. Cell Biology of Insulin Biosynthesis.- D. Mechanism of Conversion of Proinsulin to Insulin.- E. Formation of Insulin Secretory Granules.- F. The C-Peptide as a Product of Proinsulin Transformation.- G. The Regulation of Insulin Production.- H. The Insulin Gene Family.- J. Defects in the Insulin Gene: The Insulinopathies.- K. Summary.- References.- 5 Insulin Gene Regulation.- A. Overview.- B. Introduction.- C. Insulin Gene Structure.- D. Experimental Approaches.- I. Transient Assay.- II. Stable Assay.- III. Transgenic Animals.- E. Identification of Control Sequences.- I. Role of 5’ Flanking DNA.- II. Cell-Specific Enhancer and Promoter.- III. Positive and Negative Control.- IV. Regulation by Glucose.- V. Systematic Mutagenesis.- VI. Role of Other Sequences in Cell Specificity.- VII. Biochemical Approaches.- F. Expression During Development.- G. Prospects.- I. Biochemical.- II. Genetic.- III. Expression Library Screening.- IV. Gene Therapy.- References.- 6 Regulation of Insulin Release by the Intracellular Mediators Cyclic AMP, Ca2+, Inositol 1, 4, 5-Trisphosphate, and Diacylglycerol.- A. Introduction.- B. Cyclic AMP.- I. Cyclic AMP Synthesis and Breakdown.- II. Mode of Action of Cyclic AMP.- III. Physiological Role of Cyclic AMP.- C. Calcium.- I. Regulation of Ca2+Fluxes in Islet Cells.- II. Target Systems for Cytosolic Ca2+.- D. Inositol 1, 4, 5-Trisphosphate.- E. Diacylglycerol.- I. Generation of Diacylglycerol.- II. Activation of Protein Kinase C.- III. Functional Implications.- F. Concluding Remarks.- References.- 7 The Role of Cholecystokinin and Other Gut Peptides on Regulation of Postprandial Glucose and Insulin Levels.- A. Summary.- B. Background.- C. Incretin Criteria.- D. Candidate Incretins.- I. Glucose Insulinotropic Peptide.- II. Secretin.- III. Gastrin.- IV. Vasoactive Inhibitory Peptide.- V. Peptide Histidine Isoleucine and Peptide YY.- VI. Enteroglucagon.- E. An Established Incretin: Cholecystokinin.- F. Conclusion.- References.- 8 Insulin-Degrading Enzyme.- A. Introduction.- B. Substrate Specificity.- C. Inhibition Studies.- D. Subcellular Location.- E. Tissue Distribution.- F. Insulin Degradation Assays.- G. Enzyme Products.- H. Physiological Role of Insulin Protease.- J. Other Insulin-Degrading Enzymes.- I. Glutathione Insulin Transhydrogenase.- II. High Molecular Weight Insulin-Degrading Enzyme.- K. Future Studies.- References.- III. Insulin Receptor.- 9 Insulin Receptor Structure.- A. Background.- B. Early Glimpses of the Structure of the Insulin Receptor.- C. Sequence of the Insulin Receptor.- I. The ? Subunit.- II. Theß Subunit.- III. Domain Structure of the Insulin Receptor.- D. Insulin Receptors in Different Tissues and Species.- E. Concluding Remarks.- References.- 10 Insulin Receptor-Mediated Transmembrane Signalling.- A. Introduction.- B. Mechanisms of Transmembrane Signalling.- I. Signal Generation.- II. Signal Amplification.- III. Role of G Proteins.- IV. Messengers.- V. Receptor Dynamics and Transmembrane Signalling.- VI. Feedback Regulation.- C. Insulin-Mediated Transmembrane Signalling.- I. Insulin Receptor Tyrosine Kinase Activity, Insulin Action, and Receptor Internalization.- II. Receptor-Triggered Phosphorylation and Signalling.- III. G Proteins and Insulin Action.- IV. Interactions with Other Membrane Proteins.- V. Low Molecular Weight Mediators of Insulin Action.- VI. Receptor Internalization and Insulin Action.- VII. Feedback Regulation and Insulin Action.- D. Summary and Conclusions.- References.- 11 The Insulin Receptor Tyrosine Kinase.- A. Introduction.- B. Background.- I. Purification of the Insulin Receptor Kinase.- II. Role of Autophosphorylation in Insulin Receptor Kinase Function.- III. Autophosphorylation.- IV. Sites of ß Subunit Autophosphorylation.- V. Structural Requirements for Receptor Autophosphorylation.- C. Substrates of the Receptor Kinase.- I. In Vitro Substrates.- II. In Vivo Substrates.- D. Regulation of the Insulin Receptor Kinase.- I. Possible Role of cAMP-Dependent Kinase.- II. Role of Protein Kinase C.- III. Role of Phospholipids.- IV. Role of Interactions with Other Proteins.- V. Physiological Aspects.- References.- 12 Receptor-Mediated Internalization and Turnover.- A. Introduction.- B. The Insulin Receptor Itinerary.- C. Insulin Processing and Dissociation.- D. Insulin Degradation.- E. Retroendocytosis.- F. Insulin Receptor Processing.- References.- 13 Insulin-like Growth Factor I Receptors.- A. Introduction.- B. Hormonal Determinants of Binding and Specificity.- I. D Peptide.- II. C Peptide.- III. B Peptide.- IV. A Peptide.- C. The Receptor Binding Site.- D. Biological Responses.- E. Tyrosine Kinase Activity.- F. Receptor Heterogeneity.- G. A Hybrid IGF-I Receptor.- References.- IV. Effect of Insulin on Cellular Metabolism.- 14 Second Messengers of Insulin Action.- A. Overview.- B. Introduction.- C. Biological Characterization of the Putative Insulin Second Messengers.- I. Purification.- II. Biological Activities.- D. Chemical Characterization of the Enzyme Modulator as an Inositol Glycan.- I. Similarity with the Glycosyl-PI Protein Anchor.- II. Metabolic Labeling of the Inositol Glycan.- E. Structure and Biosynthesis of Glycosyl-PI.- I. Structural Studies.- II. Relationship to the Glycosyl-PI Protein Anchor.- F. Glycosyl-PI Hydrolysis is Catalyzed by an Insulin-Sensitive Glycosyl-PI-Specific Phospholipase C.- I. Characterization of a Specific PLC.- II. Coupling of the Insulin Receptor to the Glycosyl-PI-Specific PLC..- III. Release of Glycosyl-PI-Anchored Proteins.- G. The Role of Diacylglycerol in Insulin Action.- H. Inositol Glycans as Second Messengers of Insulin Action.- References.- 15 Insulin Regulation of Protein Phosphorylation.- A. Introduction.- B. Insulin-Stimulated Tyrosine Phosphorylation.- I. Insulin Receptor ß Subunit.- II. Is Tyr Phosphorylation of Other Proteins the Next Step?.- III. Strategies for the Detection of Physiologically Relevant Receptor Kinase Substrates.- IV. Candidate Substrates for the Insulin Receptor Kinase.- C. Insulin-Stimulated Ser/Thr Protein Phosphorylation.- I. Insulin-Stimulated Ser/Thr Kinases.- D. Insulin-Induced Dephosphorylation.- I. Inhibition of Protein Kinase Activity.- II. Activation of Protein Phosphatase.- E. Conclusion.- References.- 16 Effects of Insulin on Glycogen Metabolism.- A. Introduction.- I. Historical.- II. Research Approach.- B. Experimental.- I. Phosphorylation Sites of Glycogen Synthase.- II. Decreased Phosphorylation of Glycogen Synthase with Insulin Action.- III. Integration of Co valent and Allosteric Controls of Phosphorylase and Glycogen Synthase.- IV. Emerging Significance of Multiple Phosphorylation.- V. Insulin and Tissue cAMP Concentrations.- VI. Insulin and cAMP-Dependent Protein Kinase: A Marker for Mediator.- VII. Effects of Insulin on Other Kinases: A Potential Phosphorylation Cascade.- VIII. Effects of Insulin on Phosphoprotein Phosphatases: A Mechanism for Dephosphorylation.- IX. Purification and Action of Two Mediators: A Mechanism for Control of Dephosphorylation.- X. Formation of Insulin Mediators.- XI. Insulin Receptor Activation and Mediator Formation.- C. Summary.- References.- 17 Insulin-Sensitive cAMP Phosphodiesterase.- A. Introduction.- B. Localization of Insulin-Sensitive Phosphodiesterase.- C. Solubilization, Purification, and Characterization.- D. Hormonal Stimulation and its Physiological Significance.- E. Cell-Free Activation and Deactivation.- I. Effects of Salts.- II. Effects ofDithiothreitol at 37 °C.- III. Effects of SH Blocking Agents.- IV. Effects of a Mild Proteolysis.- V. Effects of cGMP and cAMP.- VI. Effects of GTP and ATP.- VII. Effects of Phosphodiesterase-Specific Inhibitors.- VIII. Effects ofTPA (a Phorbol Ester).- IX. Effects of Phosphorylation.- F. Possible Mechanisms of Insulin Action.- I. Phosphorylation Theory.- II. Mediator Theory.- III. G Protein Theory.- References.- 18 Regulation of Gene Expression by Insulin.- A. Introduction.- B. Genes Inhibited by Insulin.- I. Phosphoenolpyruvate Carboxykinase.- II. Other Genes Inhibited by Insulin.- C. Genes Induced by Insulin.- I. p33.- II. c-fos and c-myc.- III. Glyceraldehyde-3-Phosphate Dehydrogenase.- IV. Fatty Acid Synthase and Malic Enzyme.- V. Pyruvate Kinase.- VI. Ornithine Decarboxylase.- VII. Other Hepatic Genes Induced by Insulin.- VIII. Other Nonhepatic Genes Induced by Insulin.- D. Genes Inhibited or Induced by Insulin.- I. Albumin.- II. Tyrosine Aminotransferase.- E. Protein Kinase C and Insulin’s Regulation of Gene Expression.- F. Summary and Conclusions.- References.- 19 Insulin, Membrane Polarization, and Ionic Currents.- A. Insulin Effect on Membrane Potential.- I. Some Pertinent Electrophysiology.- II. Insulin Hyperpolarizes Skeletal Muscle.- III. Insulin Hyperpolarizes Adipocytes.- IV. Insulin Hyperpolarizes Myocardium.- V. Insulin and Liver Membrane Potential.- VI. Insulin and Vm of Other Cells.- VII. A Tentative Conclusion About Insulin-Induced Hyperpolarization.- B. Some Other Electrical Effects, Not on Striated Muscle.- C. Insulin’s Effect on Vm of Striated Muscle when K + Distribution Has Been Altered.- D. The Immediate Mechanism by which Insulin Hyperpolarizes Skeletal Muscle.- I. List of Candidates.- II. The Pump as Candidate.- III. Changes in Electrolyte Concentration.- IV. Changes in Permeability Coefficients.- E. Is Hyperpolarization a Step in the Transduction Chain Leading to Stimulated Glucose Uptake?.- I. Criteria.- IL Evidence that IIH is a Transduction Step Leading to Glucose Uptake.- III. Evidence That IIH is Not a Transduction Step Leading to Glucose Uptake.- IV. What May Be the Roles of IIH?.- F. Insulin Effects on Some Voltage-Sensitive Currents.- I. Voltage-Sensitive vs Resting Currents.- II. Insulin Increases an Na+ Current-Dependent K+ Current.- III. Insulin Decreases Both Ca2+ Currents in Rat Myoballs.- IV. Functions of Insulin Effects on Voltage-Sensitive Channels.- G. Electrical Steps in the Insulin Transduction Scheme.- References.- 20 Insulin Regulation of Metabolism Relevant to Gluconeogenesis.- A. Introduction.- B. Overview of Blood Glucose Regulation.- C. Biochemical Pathways of Glycolysis and Gluconeogenesis.- I. Enzymes of Glycolysis and Gluconeogenesis.- II. Futile Cycles, Regulation by Enzyme Pairs.- III. Hepatic Gluconeogenesis.- D. Hormonal Regulation.- I. Glucagon.- II. Insulin Effects on Gluconeogenesis.- III. Hepatic Gene Expression and Metabolic Zonation.- References.