1 Quantum Theory and the Structure of Atoms.- 1.1 Geochemistry — History of Self-Consistent Atoms.- 1.2 The Beginnings of Quantum Theory.- 1.2.1 Rutherford-Bohr Model of the Hydrogen Atom and Three Postulates of the “Old Quantum Theory”.- 1.2.2 Calculation of the Radius and Energy of Hydrogen Atom Orbits.- 1.2.3 Atomic Structure and Spectra. The Calculation of Line Spectrum of the Hydrogen Atom.- 1.2.4 Fine Structure of Spectra and Sommerfeld’s Development of the Bohr Theory; Quantum Numbers.- 1.3 The Schrödinger Equation as the Basic Equation of Quantum Mechanics.- 1.3.1 The Physical Bases.- 1.3.2 Derivation of the Schrödinger Equation.- 1.4 Atomic Orbitals (Solutions of the Schrödinger Equation).- 1.4.1 Physical Meaning of the Schrödinger Equation Solutions.- 1.4.2 The Physical Meaning of the Atomic Orbitals.- 1.4.3 The s, p, d, f Systematics of Atomic Orbitals.- 1.5 Orbital Radii (Solutions of the Schrödinger Equation).- 1.5.1 Concerning the Calculations of Electronic Structure of Many-Electron Atoms.- 1.5.2 Orbital Radii and the Wave Functions of Atoms.- 1.6 Electron Spin.- 1.7 Electronic Configurations and the Periodic System of Elements.- 1.8 Term Symbols and Atomic States.- 1.8.1 Description of Atomic States.- 1.8.2 Term Symbols.- 1.8.3 Term Derivation from Electron Configurations.- 1.8.4 Free Atom Energy Levels and Hamiltonian.- 1.8.5 Atomic Spectroscopy and Spectrochemical Analysis of Minerals, Rocks, and Ores; Spectroscopy-Cosmochemistry-Astrophysics.- 2 Crystal Field Theory.- 2.1 The Actions of the Crystal Field upon the Atomic Orbitals and Terms.- 2.1.1 Symmetry of Atomic Orbitals in the Crystal Field; the Concepts of Characters and Irreducible Representations.- 2.1.2 Correlation Tables for the Symmetry Types in Various Point Groups.- 2.1.3 Selection Rules Related to Symmetry Types.- 2.2 Three Types of Ion Behavior in Crystal Fields: Weak, Medium, and Strong Crystalline Fields.- 2.3 Iron Group: Term Splitting by Crystal Field.- 2.3.1 Electron Configurations, Terms, Cubic Field Splitting (Qualitative Schemes).- 2.3.2 Crystal Field Parameters; Tanabe-Sugano Diagrams.- 2.3.3 Splitting by Spin-Orbit Interaction, Jahn-Teller Effect, and Lowering of Symmetry.- 3 Molecular Orbital Theory.- 3.1 Introduction.- 3.2 General Theory of the Chemical Bond; Molecular Orbital Method; Valence Bond Method.- 3.2.1 Description and Systematics of Molecular Orbitals.- 3.2.2 Molecular Orbital Energy and Coefficient Calculations (the H2+ Molecule Ion Example).- 3.2.3 Molecular Orbital Calculation for Octahedral and Tetrahedral Complexes of Transition Metal and Nontransition Element Ions.- 3.2.4 Valence Bond Method; Hybrid Atomic Orbitals.- 3.3 Analysis of the MO Scheme: Information Obtained from MO and Basic Concepts of the Theory of the Chemical Bond.- 3.3.1 Coulomb Integrals HAA in the MO Method-Ionization Potentials-VSIE; Deep Meaning of the Self-Consistency; Electronegativity.- 3.3.2 LCAO Coefficients ci and Electronic Population Analysis; Ionicity — Covalency of Chemical Bonding and Effective Charge; Valence and Charge.- 3.4 Further Development of Molecular Orbital Methods.- 3.4.1 About the Methods of the MO Calculations for Isolated Clusters.- 3.4.2 Molecular Orbitals for the Larger Clusters.- 3.4.3 Bond Orbital Model.- 4 Energy Band Theory and Reflectance Spectra of Minerals.- 4.1 Basic Principles and Methods of the Energy Band Theory.- 4.1.1 Wave Vector k in the Free-Electron Case.- 4.1.2 Two Approximations of the Energy Band Theory: Nearly Free Electrons and Tight Binding Models.- 4.1.3 Concept of k-Space and Brillouin Zones.- 4.1.4 Classification of Orbitals in Crystals with Respect to Symmetry Types.- 4.1.5 Energy Band Structure Schemes.- 4.1.6 Band Occupation; Densities of States; Fermi Surface.- 4.1.7 The Methods of Band Structure Calculation.- 4.2 Analysis of the Band Schemes and Reflectance Spectra of Minerals.- 4.2.1 Intrinsic Absorption and Reflectance Spectra. Measured and Calculated Parameters.- 4.2.2 Structure Type of NaCl-MgO-PbS.- 4.2.3 Structure Type of Sphalerite (Cubic ZnS).- 4.2.4 Structure Type ofWurtzite (ZnS Hexagonal).- 4.2.5 Data for Other Minerals.- 5 Spectroscopy and the Chemical Bond.- 5.1 General Outline and Parameters of Solid State Spectroscopy.- 5.2 Principal Concepts and Parameters of the Chemical Bond from the Standpoint of Spectroscopy.- 6 Optical Absorption Spectra and Nature of Colors of Minerals.- 6.1 Parameters of Optical Absorption Spectra.- 6.1.1 Units of Measurement of Optical Transition Energies.- 6.1.2 Intensity of Absorption.- 6.1.3 Diffuse Reflectance Spectra.- 6.2 Types of Optical Absorption Spectra and Selection Rules.- 6.3 Analysis and Experimental Survey of Transition Metal Ions Spectra.- 6.4 The Nature of Colors of Minerals.- 6.4.1 Types of Colors of Minerals.- 7 Structure and the Chemical Bond.- 7.1 Contemporary Methods of Description and Calculations of the Chemical Bond in Solids.- 7.1.1 Extension of the Bond Orbital Methods for Cristobalite and Quartz Structures.- 7.2 Lattice Energy of Ionic Crystals.- 7.3 Lattice Sums, Crystal Field Parameters, Spectroscopical Parameters, and Intracrystalline Distribution.- 7.4 Atomic and Ionic, Orbital, and Mean Radii.- 7.4.1 Ionic Radii and Molecular Orbitals.- 7.4.2 Systems of Additive Ionic and Atomic Radii.- 7.4.3 Appraisal of the Systems of Additive Radii.- 7.4.4 Orbital Radii.- 7.4.5 Experimental X-Ray and Electron Diffraction Determinations of Atomic Sizes.- 8 Chemical Bond in Some Classes and Groups of Minerals.- 8.1 Diversity of the Aspects of a Complex Phenomenon of Chemical Bond in Solids.- 8.2 The Chemical Bond in Silicates.- 8.2.1 Description of the Chemical Bond in SiO4?4 in Terms of the Calculated Molecular Orbital Diagram.- 8.2.2 Molecular Orbital Diagram for the SiO4?4 According to X-Ray and ESCA Spectra.- 8.2.3 Effective Charges of Si and Al in the Silicates and Alumino-silicates.- 8.2.4 Silica Polymorphs: Energy Band Schemes; Bond Orbital Model and Calculations of the Electronic Structure and Properties.- 8.2.5 Cation Polyhedra in Crystal Structures of Silicates.- 8.2.6 Degree of Ionicity-Covalency in Cation Polyhedra According to Superfine Structure of Electron Paramagnetic Resonance (EPR) Spectra.- 8.2.7 Energies of the Structural Sites, Energies of Stabilization, and Intracrystalline Fields in Silicates.- 8.2.8 Mössbauer Characteristics of the Bonding of Iron and of the Site Population in Silicate Minerals.- 8.2.9 Crystal-Chemical Meaning of the Nuclear Magnetic Resonance (NMR) Parameters in Silicates.- 8.2.10 Bond Length and Angle Variations; Bridging and Non-bridging Oxygens.- 8.2.11 Interlayer Bonding and Surface Energy Calculations in Sheet Silicates.- 8.2.12 Mantle Properties, High Pressure Spectroscopy, and Electronic Structure of Silicates.- 8.3 The Chemical Bond in Sulfides and Related Compounds.- 8.3.1 Diversity of the Aspects of the Chemical Bond in Sulfide and Related Compounds and the Theoretical Schemes.- 8.3.2 Energy Gaps in Sulfides, Types of Crystal and Types of Optical Transition; Ionicity and Band Scheme.- 8.3.3 Interactions M-M and M-S-M in Transition Metal Sulfides and Their Relation to Properties and Structures.- 8.3.4 States of Iron in Sulfides According to Mössbauer Spectra Parameters.- 8.3.5 Polarity and Donor-Acceptor Bonds in Sulfides and Sulfosalts of As, Sb, Bi According to NQR Data.- 8.3.6 Structural Features of Sulfides and Related Compounds from the Standpoint of the Electronic Structure.- 8.3.7 Survey of Data on the Chemical Bond in Sulfides.- 8.4 Features of Chemical Bonding in Other Classes of Mineral.- References.