, , , e.a.

Minimum Error Entropy Classification

Specificaties
Paperback, 262 blz. | Engels
Springer Berlin Heidelberg | 2013e druk, 2014
ISBN13: 9783642437427
Rubricering
Springer Berlin Heidelberg 2013e druk, 2014 9783642437427
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals.

Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

Specificaties

ISBN13:9783642437427
Taal:Engels
Bindwijze:paperback
Aantal pagina's:262
Uitgever:Springer Berlin Heidelberg
Druk:2013

Inhoudsopgave

Introduction.- Continuous Risk Functionals.- MEE with Continuous Errors.- MEE with Discrete Errors.- EE-Inspired Risks.- Applications.

Rubrieken

    Personen

      Trefwoorden

        Minimum Error Entropy Classification