, ,

Meta-Learning in Computational Intelligence

Specificaties
Paperback, 359 blz. | Engels
Springer Berlin Heidelberg | 2011e druk, 2013
ISBN13: 9783642268588
Rubricering
Springer Berlin Heidelberg 2011e druk, 2013 9783642268588
€ 264,99
Levertijd ongeveer 8 werkdagen

Samenvatting

Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open.
Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which  these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process.

This is where algorithms that learn how to learnl come to rescue.
Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn.

This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field.

Specificaties

ISBN13:9783642268588
Taal:Engels
Bindwijze:paperback
Aantal pagina's:359
Uitgever:Springer Berlin Heidelberg
Druk:2011

Inhoudsopgave

<p>Universal meta-learning</p><p>architecture and algorithms.- <p>Meta-learning of instance</p><p>selection for data</p><p>summarization.- <p>Choosing the metric: a simple</p><p>model approach.- <p>Meta-learning Architectures:</p><p>Collecting, Organizing and</p><p>Exploiting Meta-knowledge.- <p>Computational intelligence for</p><p>meta-learning: a promising</p><p>avenue of research.- <p>Self-organization of supervised</p><p>models.- <p>Selecting Machine Learning</p><p>Algorithms Using the Ranking</p><p>Meta-Learning Approach.- <p>A Meta-Model Perspective and</p><p>Attribute Grammar Approach to</p><p>Facilitating the Development of</p><p>Novel Neural Network Models.- <p>Ontology-Based Meta-Mining</p><p>of Knowledge Discovery</p><p>Workflows.- <p>Optimal Support Features for</p><p>Meta-learning.</p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p>
€ 264,99
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        Meta-Learning in Computational Intelligence