Generalized Curvatures

Specificaties
Gebonden, 266 blz. | Engels
Springer Berlin Heidelberg | 2008e druk, 2008
ISBN13: 9783540737919
Rubricering
Springer Berlin Heidelberg 2008e druk, 2008 9783540737919
Onderdeel van serie Geometry and Computing
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a groupG acting on it.

Specificaties

ISBN13:9783540737919
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:266
Uitgever:Springer Berlin Heidelberg
Druk:2008

Inhoudsopgave

Motivations.- Motivation: Curves.- Motivation: Surfaces.- Background: Metrics and Measures.- Distance and Projection.- Elements of Measure Theory.- Background: Polyhedra and Convex Subsets.- Polyhedra.- Convex Subsets.- Background: Classical Tools in Differential Geometry.- Differential Forms and Densities on EN.- Measures on Manifolds.- Background on Riemannian Geometry.- Riemannian Submanifolds.- Currents.- On Volume.- Approximation of the Volume.- Approximation of the Length of Curves.- Approximation of the Area of Surfaces.- The Steiner Formula.- The Steiner Formula for Convex Subsets.- Tubes Formula.- Subsets of Positive Reach.- The Theory of Normal Cycles.- Invariant Forms.- The Normal Cycle.- Curvature Measures of Geometric Sets.- Second Fundamental Measure.- Applications to Curves and Surfaces.- Curvature Measures in E2.- Curvature Measures in E3.- Approximation of the Curvature of Curves.- Approximation of the Curvatures of Surfaces.- On Restricted Delaunay Triangulations.

Rubrieken

    Personen

      Trefwoorden

        Generalized Curvatures