Self-Adaptive Heuristics for Evolutionary Computation

Specificaties
Gebonden, 182 blz. | Engels
Springer Berlin Heidelberg | 2008e druk, 2008
ISBN13: 9783540692805
Rubricering
Springer Berlin Heidelberg 2008e druk, 2008 9783540692805
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.

This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Specificaties

ISBN13:9783540692805
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:182
Uitgever:Springer Berlin Heidelberg
Druk:2008

Inhoudsopgave

I: Foundations of Evolutionary Computation.- Evolutionary Algorithms.- Self-Adaptation.- II: Self-Adaptive Operators.- Biased Mutation for Evolution Strategies.- Self-Adaptive Inversion Mutation.- Self-Adaptive Crossover.- III: Constraint Handling.- Constraint Handling Heuristics for Evolution Strategies.- IV: Summary.- Summary and Conclusion.- V: Appendix.- Continuous Benchmark Functions.- Discrete Benchmark Functions.

Rubrieken

    Personen

      Trefwoorden

        Self-Adaptive Heuristics for Evolutionary Computation