,

Knowledge Discovery in Databases

Techniken und Anwendungen

Specificaties
Paperback, 282 blz. | Duits
Springer Berlin Heidelberg | 2000e druk, 2000
ISBN13: 9783540673286
Rubricering
Springer Berlin Heidelberg 2000e druk, 2000 9783540673286
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Knowledge Discovery in Databases (KDD) ist ein aktuelles Forschungs- und Anwendungsgebiet der Informatik. Ziel des KDD ist es, selbständig entscheidungsrelevante, aber bisher unbekannte Zusammenhänge und Verknüpfungen in den Daten großer Datenmengen zu entdecken und dem Analysten oder dem Anwender in übersichtlicher Form zu präsentieren. Die Autoren stellen die Techniken und Anwendungen dieses interdisziplinären Gebiets anschaulich dar.

Specificaties

ISBN13:9783540673286
Taal:Duits
Bindwijze:paperback
Aantal pagina's:282
Uitgever:Springer Berlin Heidelberg
Druk:2000

Inhoudsopgave

1.1 Grundbegriffe des Knowledge Discovery in Databases.- 1.2 Typische KDD-Anwendungen.- 1.3 Inhalt und Aufbau dieses Buches.- 1.4 Literatur.- Grundlagen.- 2.1 Datenbanksysteme.- 2.2 Statistik.- 2.3 Literatur.- Clustering.- 3.1 Einleitung.- 3.2 Partitionierende Verfahren.- 3.3 Hierarchische Verfahren.- 3.4 Datenbanktechniken zur Leistungssteigerung.- 3.5 Besondere Anforderungen und Verfahren.- 3.6 Zusammenfassung.- 3.7 Literatur.- Klassifikation.- 4.1 Einleitung.- 4.2 Bayes-Klassifikatoren.- 4.3 Nächste-Nachbarn-Klassifikatoren.- 4.4 Entscheidungsbaum-Klassifikatoren.- 4.5 Skalierung für große Datenbanken.- 4.6 Zusammenfassung.- 4.7 Literatur.- Assoziationsregeln.- 5.1 Einleitung.- 5.2 Einfache Assoziationsregeln: Der Apriori-Algorithmus.- 5.3 Hierarchische Assoziationsregeln bezüglich Item-Taxonomien.- 5.4 Quantitative Assoziationsregeln.- 5.5 Zusammenfassung.- 5.6 Literatur.- Generalisierung.- 6.1 Einleitung.- 6.2 Data Cubes.- 6.3 Effiziente Anfragebearbeitung in Data Cubes.- 6.4 Attributorientierte Induktion.- 6.5 Inkrementelle attributorientierte Induktion.- 6.6 Zusammenfassung.- 6.7 Literatur.- Besondere Datentypen und Anwendungen.- 7.1 Temporal Data Mining.- 7.2 Spatial Data Mining.- 7.3 Text-und Web-Mining.- 7.4 Literatur.- Andere Paradigmen.- 8.1 Induktive Logik-Programmierung.- 8.2 Genetische Algorithmen.- 8.3 Neuronale Netze.- 8.4 Selbstorganisierende Karten (Kohonen Maps).- 8.5 Literatur.

Rubrieken

    Personen

      Trefwoorden

        Knowledge Discovery in Databases