Komplexe Zahlen in der Schwingungslehre.- Stabilität und Instabilität.- 1 Systeme mit einem Freiheitsgrad.- 1.1 Ungedämpfte Eigenschwingungen.- 1.1.1 Formulierung der Bewegungsgleichung.- 1.1.2 Lösung der Bewegungsgleichung.- 1.1.3 Phasenkurven.- 1.2 Gedämpfte Eigenschwingungen.- 1.2.1 Coulombsche Dämpfung.- 1.2.2 Geschwindigkeitsproportionale Dämpfung.- 1.2.3 Geschwindigkeitsquadrat-proportionale Dämpfung.- 1.3 Erzwungene Schwingungen.- 1.3.1 Harmonische Erregung.- 1.3.2 Arbeit und Leistung von Erregerkräften.- 1.3.3 Periodische Erregung.- 1.3.4 Spezielle Erregerfunktionen.- 1.3.5 Variation der Konstanten. Faltungsintegrale.- 1.3.6 Anlauf eines unwuchterregten Schwingers.- 1.3.7 Erregung durch einen einzelnen Impuls.- 1.3.8 Erregung durch periodische Impulse.- Aufgaben zu Kapitel 1.- 1.4.1 Lösungen zu den Aufgaben.- 2 Systeme mit endlich vielen Freiheitsgraden.- 2.1 Formulierung von Bewegungsgleichungen.- 2.1.1 Massenmatrix. Steifigkeitsmatrix.- 2.1.2 Dämpfungsmatrix. Dissipationsfunktion.- 2.1.3 Linearisierung von Bewegungsgleichungen.- 2.1.4 Gyroskopische Kräfte.- 2.1.5 Schwingerketten.- 2.1.6 Allgemeine lineare Systeme mit konstanten Koeffizienten.- 2.2 Eigenschwingungen ungedämpfter mechanischer Systeme.- 2.2.1 Modalmatrix.- 2.2.2 Hauptkoordinaten.- 2.3 Approximation der niedrigsten Eigenkreisfrequenz.- 2.3.1 Der Rayleighquotient.- 2.3.2 Das Verfahren von Ritz.- 2.3.3 Anwendungen auf Biegestäbe.- 2.3.4 Homogene Biegestäbe.- 2.4 Eigenschwingungen allgemeiner linearer Systeme.- 2.4.1 Lösung durch die Fundamentalmatrix.- 2.4.2 Lösung durch Eigenwerte und Eigenvektoren.- 2.4.3 Der Sonderfall mechanischer Systeme.- 2.4.4 Durchdringende Dämpfung.- 2.5 Erzwungene Schwingungen ohne Dämpfung.- 2.5.1 Periodische Erregung.- 2.5.2 Resonanz. Scheinresonanz.- 2.5.3 Schwingerketten.- 2.6 Erzwungene Schwingungen mit Dämpfung.- 2.6.1 Periodische Erregung.- 2.6.2 Schwingungstilgung.- 2.7 Entkopplung der inhomogenen Gleichungen.- 2.7.1 Entkopplung bei N unabhängigen Eigenvektoren.- 2.7.2 Der Fall von < N unabhängigen Eigenvektoren.- 2.8 Aufgaben zu Kapitel 2.- 2.8.1 Läsungen zu den Aufgaben.- 3 Parametererregte Schwingungen.- 3.1 Das Pendel mit veränderlicher Länge.- 3.2 Periodische Parametererregung.- 3.2.1 Der Satz von Floquet.- 3.2.2 Stabilitätskriterien.- 3.2.3 Numerische Läsungen.- 3.2.4 Stabilitätsgrenzen.- 3.2.5 Die Stabilitätskarte der Mathieugleichung.- 3.2.6 Das stehende Mehrkörperpendel.- 3.2.7 Erzwungene Schwingungen und Parametererregung.- 3.3 Parametererregte n-Freiheitsgrad-Systeme.- 3.3.1 Der Satz von Floquet.- 3.3.2 Stabilitätskriterien.- 3.3.3 Numerische Lösungen.- 3.3.4 Erzwungene Schwingungen und Parametererregung.- 4 Eindimensionale Kontinua.- 4.1 Die Wellengleichung.- 4.1.1 Die schwingende Saite.- 4.1.2 Longitudinalschwingungen eines Stabes.- 4.1.3 Torsionsschwingungen eines Stabes.- 4.1.4 Randbedingungen und Anfangsbedingungen.- 4.2 Lösungen der Wellengleichung nach d’Alembert.- 4.2.1 Charakteristiken.- 4.2.2 Wellenausbreitungsgeschwindigkeiten.- 4.2.3 Harmonische Wellen.- 4.2.4 Wellen infolge Anfangsbedingungen.- 4.2.5 Erzwungene Wellen.- 4.2.6 Reflexion und Transmission von Wellen.- 4.3 Bernoulli-Lösungen der Wellengleichung.- 4.3.1 Ungedämpfte Eigenschwingungen.- 4.3.2 Erzwungene periodische Schwingungen.- 4.4 Biegeschwingungen von Stäben.- 4.4.1 Die Bewegungsgleichung.- 4.4.2 Randbedingungen und Anfangsbedingungen.- 4.4.3 Biegewellen. Dispersion.- 4.4.4 Ungedämpfte Eigenschwingungen.- 4.4.5 Der Rayleighquotient für Biegestäbe.- 4.4.6 Das Verfahren von Ritz.- 4.4.7 Erzwungene periodische Biegeschwingungen.- Literatur.