Descriptive Set Theory and Forcing
How to prove theorems about Borel sets the hard way
Samenvatting
An advanced graduate course. Some knowledge of forcing is assumed, and some elementary Mathematical Logic, e.g. the Lowenheim-Skolem Theorem. A student with one semester of mathematical logic and 1 of set theory should be prepared to read these notes. The first half deals with the general area of Borel hierarchies. What are the possible lengths of a Borel hierarchy in a separable metric space? Lebesgue showed that in an uncountable complete separable metric space the Borel hierarchy has uncountably many distinct levels, but for incomplete spaces the answer is independent. The second half includes Harrington's Theorem - it is consistent to have sets on the second level of the projective hierarchy of arbitrary size less than the continuum and a proof and appl- ications of Louveau's Theorem on hyperprojective parameters.
Specificaties
Inhoudsopgave
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm
% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9
% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir
% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa
% aeqabaWaaeaaeaaakeaacqGHris5daqhaaWcbaGaeGOmaidabaGaeG
% ymaedaaaaa!3322!
$$
\sum _2^1
$$ well-orderings.- 25 Large
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm
% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9
% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir
% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa
% aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGOmaidabaGaeG
% ymaedaaaaa!3310!
$$
\prod _2^1
$$ sets.- III Classical Separation Theorems.- 26 Souslin-Luzin Separation Theorem.- 27 Kleene Separation Theorem.- 28
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm
% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9
% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir
% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa
%aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGymaedabaGaeG
% ymaedaaaaa!330E!
$$
\prod _1^1
$$-Reduction.- 29
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm
% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9
% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir
% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa
% aeqabaWaaeaaeaaakeaacqGHuoardaqhaaWcbaGaeGymaedabaGaeG
% ymaedaaaaa!32E3!
$$
\Delta _1^1
$$-codes.- IV Gandy Forcing.- 30
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm
% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9
% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir
% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa
% aeqabaWaaeaaeaaakeaacqGHpis1daqhaaWcbaGaeGymaedabaGaeG
% ymaedaaaaa!330E!
$$
\prod _1^1
$$ equivalence relations.- 31 Borel metric spaces and lines in the plane.- 32
% MathType!MTEF!2!1!+-
% feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm
% Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9
% q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir
% -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGa
% aeqabaWaaeaaeaaakeaacqGHris5daqhaaWcbaGaeGymaedabaGaeG
% ymaedaaaaa!3320!
$$
\sum _1^1
$$ equivalence relations.- 33 Louveau’s Theorem.- 34 Proof of Louveau’s Theorem.- References.- Elephant Sandwiches.

