, , , , e.a.

Topics in Computational Wave Propagation

Direct and Inverse Problems

Specificaties
Paperback, 410 blz. | Engels
Springer Berlin Heidelberg | 0e druk, 2003
ISBN13: 9783540007449
Rubricering
Springer Berlin Heidelberg 0e druk, 2003 9783540007449
Levertijd ongeveer 8 werkdagen

Samenvatting

These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Specificaties

ISBN13:9783540007449
Taal:Engels
Bindwijze:paperback
Aantal pagina's:410
Uitgever:Springer Berlin Heidelberg
Druk:0

Inhoudsopgave

New Results on Absorbing Layers and Radiation Boundary Conditions.- Fast, High-Order, High-Frequency Integral Methods for Computational Acoustics and Electromagnetics.- Galerkin Boundary Element Methods for Electromagnetic Scattering.- Computation of resonance frequencies for Maxwell equations in non-smooth domains.- hp-Adaptive Finite Elements for Time-Harmonic Maxwell Equations.- Variational Methods for Time-Dependent Wave Propagation Problems.- Some Numerical Techniques for Maxwell’s Equations in Different Types of Geometries.- On Retarded Potential Boundary Integral Equations and their Discretisation.- Inverse Scattering Theory for Time-Harmonic Waves.- Herglotz Wave Functions in Inverse Electromagnetic Scattering Theory.- Appendix: Colour Figures.

Rubrieken

    Personen

      Trefwoorden

        Topics in Computational Wave Propagation