Lineare Algebra und analytische Geometrie

Specificaties
Paperback, 269 blz. | Duits
Vieweg+Teubner Verlag | 1985e druk, 1985
ISBN13: 9783528085841
Rubricering
Vieweg+Teubner Verlag 1985e druk, 1985 9783528085841
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Dieses Buch behandelt die lineare und multiline are Algebra sowie die analytische Geome­ trie. Es ist entstanden aus entsprechenden Vorlesungen des ersten Studienjahres, die ich mehrfach an den Universitaten Freiburg und Dortmund fiir Mathematiker, Physiker und Studenten mit mathematischem Nebenfach gehalten habe. Der Schwerpunkt dieses Buches liegt auf den weiterfiihrenden Themen des zweiten Semesters. ledoch ist die Darstellung weitgehend in sich abgeschlossen, da elementare Kenntnisse wiederholt und oftmals neu begriindet werden. Fiir die erstmalige Aneignung der Grundlagen sei auf meine ,,Einfiihrung in die line are Algebra" (Vieweg 1982) hin­ gewiesen. Nach algebraischen Vorbereitungen befaBt sich der erste Teil dieses Buches mit allgemeinen Vektorraumen, Normalformen linearer Abbildungen, komplexen Vektorraumen und multilinearer Algebra. Hervorzuheben sind die Diskussion der Codimension, der Briicken­ schlag zur Analysis in Gestalt der normierten Vektorraume und die Fundierung der Haupt­ achsentransformation mit dem Rayleighschen Extremalprinzip. Bei den komplexen Vektorraumen erfolgt ein elementarer Beweis des "Fundamentalsatzes der Algebra", der im folgenden zutreffender als algebraischer Fundamentalsatz in C bezeichnet wird.

Specificaties

ISBN13:9783528085841
Taal:Duits
Bindwijze:paperback
Aantal pagina's:269
Druk:1985

Inhoudsopgave

0 Aus der Algebra.- 0.1 Gruppen und Untergruppen.- 0.2 Homomorphe Abbildungen und Faktorgruppen.- 0.3 Restklassen ganzer Zahlen.- 0.4 Ringe und Körper.- 1 Vektorräume.- 1.1 Grundlagen.- 1.2 Cartesische Produkte und Summen.- 1.3 Dualität.- 1.4 Quotientenräume und Codimension.- 1.5 Normierte Vektorräume.- 2 Feinstruktur spezieller Endomorphismen euklidischer Vektorräume.- 2.1 Hilfsmittel.- 2.2 Symmetrische Endomorphismen.- 2.3 Isometrische Endomorphismen.- 2.4 Normale Endomorphismen.- 3 Komplexe Vektorräume.- 3.1 Komplexe und reelle Struktur.- 3.2 Der algebraische Fundamentalsatz in C.- 3.3 Anwendung auf die Jordansche Normalform.- 4 Multilineare Algebra.- 4.1 Multilineare Abbildungen und Multilinearformen.- 4.2 Tensorprodukt endlich dimensionaler Vektorräume.- 4.3 Tensoralgebra über einem endlich dimensionalen Vektorraum.- 4.4 Alternierende multilineare Abbildungen und Formen.- 4.5 Äußere Algebra über einem endlich dimensionalen Vektorraum.- 4.6 Darstellung von Untervektorräumen und Determinanten in der äußeren Algebra.- 5 Affine und euklidische Geometrie.- 5.1 Affine Geometrie.- 5.2 Affine Abbildungen.- 5.3 Euklidische Geometrie.- 6 Quadratische Hyperflächen in der affinen und euklidischen Geometrie.- 6.1 Definition und Darstellung von Quadriken.- 6.2 Schnitt mit Geraden.- 6.3 Affine Quadriktypen.- 6.4 Euklidische Quadriktypen.- 7 Projektive Geometrie.- 7.1 Motivierung.- 7.2 Präzise Definitionen und grundlegende Begriffe.- 7.3 Das Dualitätsprinzip.- 7.4 Homogene Koordinaten und projektive Bezugssysteme.- 7.5 Das Doppelverhältnis.- 7.6 Projektive Abbildungen.- 7.7 Quadriken in der Projektivgeometrie.- 7.8 Zusammenhang mit der Affingeometrie.- Literaturhinweise.- Wichtige Symbole.

Rubrieken

    Personen

      Trefwoorden

        Lineare Algebra und analytische Geometrie