The Basic Theory of Power Series

Specificaties
Paperback, 134 blz. | Engels
Vieweg+Teubner Verlag | 1993e druk, 1993
ISBN13: 9783528065256
Rubricering
Vieweg+Teubner Verlag 1993e druk, 1993 9783528065256
Onderdeel van serie Advanced Lectures in Mathematics
Verwachte levertijd ongeveer 8 werkdagen

Samenvatting

The aim of these notes is to cover the basic algebraic tools and results behind the scenes in the foundations of Real and Complex Analytic Geometry. The author has learned the subject through the works of many mathematicians, to all of whom he is indebted. However, as the reader will immediately realize, he was specially influenced by the writings of S.S. Abhyankar and J .-C. Tougeron. In any case, the presentation of all topics is always as elementary as it can possibly be, even at the cost of making some arguments longer. The background formally assumed consists of: 1) Polynomials: roots, factorization, discriminant; real roots, Sturm's Theorem, formally real fields; finite field extensions, Primitive Element Theorem. 2) Ideals and modules: prime and maximal ideals; Nakayama's Lemma; localiza­ tion. 3) Integral dependence: finite ring extensions and going-up. 4) Noetherian rings: primary decomposition, associated primes, Krull's Theorem. 5) Krull dimension: chains of prime ideals, systems of parameters; regular systems of parameters, regular rings. These topics are covered in most texts on Algebra and/or Commutative Algebra. Among them we choose here as general reference the following two: • M. Atiyah, I.G. Macdonald: Introduction to Commutative Algebra, 1969, Addison-Wesley: Massachusetts; quoted [A-McD] . • S. Lang: Algebra, 1965, Addison-Wesley: Massachusetts; quoted [L].

Specificaties

ISBN13:9783528065256
Taal:Engels
Bindwijze:paperback
Aantal pagina's:134
Druk:1993

Inhoudsopgave

I Power Series.- 1 Series of Real and Complex Numbers.- 2 Power Series.- 3 Rückert’s and Weierstrass’s Theorems.- II Analytic Rings and Formal Rings.- 1 Mather’s Preparation Theorem.- 2 Noether’s Projection Lemma.- 3 Abhyankar’s and Rückert’s Parametrization.- 4 Nagata’s Jacobian Criteria.- 5 Complexification.- III Normalization.- 1 Integral Closures.- 2 Normalization.- 3 Multiplicity in Dimension 1.- 4 Newton-Puiseux’s Theorem.- IV Nullstellensatze.- 1 Zero Sets and Zero Ideals.- 2 Rückert’s Complex Nullstellensatz.- 3 The Homomorphism Theorem.- 4 Risler’s Real Nullstellensatz.- 5 Hilbert’s 17th Problem.- V Approximation Theory.- 1 Tougeron’s Implicit Functions Theorem.- 2 Equivalence of Power Series.- 3 M. Artin’s Approximation Theorem.- 4 Formal Completion of Analytic Rings.- 5 Nash Rings.- VI Local Algebraic Rings.- 1 Local Algebraic Rings.- 2 Chevalley’s Theorem.- 3 Zariski’s Main Theorem.- 4 Normalization and Completion.- 5 Efroymson’s Theorem.- Bibliographical Note.

Rubrieken

    Personen

      Trefwoorden

        The Basic Theory of Power Series