Physics of Magnetic Flux Tubes

Specificaties
Gebonden, blz. | Engels
Springer International Publishing | 2e druk, 2018
ISBN13: 9783319963600
Rubricering
Springer International Publishing 2e druk, 2018 9783319963600
€ 300,99
Levertijd ongeveer 8 werkdagen

Samenvatting

This book presents the physics of magnetic flux tubes, including their fundamental properties and collective phenomena in an ensemble of flux tubes. The physics of magnetic flux tubes is vital for understanding fundamental processes in the solar atmosphere that are shaped and governed by magnetic fields. The concept of magnetic flux tubes is also central to various magnetized media ranging from laboratory plasma and Earth's magnetosphere to planetary, stellar and galactic environments.

The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms that are tailored to practical applications. These are welded together with empirical data extending from the early pioneering observations to the most recent state-of-the-art data.

This new edition of the book is updated and contains a significant amount of new material throughout as well as four new chapters and 48 problems with solutions. Most problems make use of original papers containing fundamental results. This way, the original paper, often based on complex theory, turns into a convenient tool for practical use and quantitative analysis.

Specificaties

ISBN13:9783319963600
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer International Publishing
Druk:2

Inhoudsopgave

<p>Preface</p> <p>Contents</p> <p>Chapter 1. The Sun’s Magnetic fields</p> <p>1.1 The Sun as a Star</p> 1.1.2 Legacy of ancients<p></p> <p>1.1.2 Hidden interior</p> <p>1.1.3 Magnetic dipole</p> <p>1.2 Magnetic Surface</p> <p>1.2.1 Quiet sun</p> <p>1.2.2 Sunspots and active regions</p> <p>1.2.3 Plages</p> <p>1.2.4 High latitudes and polar regions</p> <p>1.3 Mass Flows</p> <p>1.4 Magnetic Skeleton</p> <p>References</p> <p>Chapter 2. A Quick Look on Small Scale Flux Tubes</p> <p>2.1 Early Years</p> <p>2.1.1 First observational signs of magnetic flux tubes</p> <p>2.1.2 The Sunspot dilemma</p> <p>2.2 Elements of Theory for de facto Flux Tubes</p> <p>2.3 Numerical visualization and Observations</p> <p>2.4 Filamentary Structures in Laboratory and Universe</p> <p>2.5 Problems</p> <p>References</p> <p>Chapter 3. Intrinsic Properties of Flux Tubes - Wave Phenomena</p> <p>3.1 Equations of Motion or How are Tube Waves Excited</p> <p>3.1.1 Equation of Motion for a Single flux tube</p> <p>3.1.2 Macroscopic Motions of an Ensemble of flux tubes</p> <p>3.2 Absorption of Acoustic Waves - Landau Resonance</p> <p>3.3 Effects of Non-collinearity of Flux Tubes</p> <p>3.4 Exact Theory of Linear Oscillations of Magnetic Flux Tube</p> <p>3.5 Radiation of Secondary Waves by Oscillationg Flux Tubes</p> <p>3.6 Scattering of Acoustic Waves and Maximum Energy input</p> <p>3.7 Axisymmetric Oscillations of Flux Tube</p> <p>3.7.1 Types of m = 0 mode</p> <p>3.7.2 Equation of Motion for Sausage Oscillations</p> <p>3.7.3 Dispersion Relation</p> <p>3.7.4 Sausage and and Fast Oscillations in homogeneous flux tube</p> <p>3.7.5 Effects of Radial Inhomogeneities on Sausage oscillations</p> 3.8 Problems<p></p> <p>Appendix A. Analogy with Landau Damping</p> <p>Appendix B. Derivation of Equation for Kink Oscillations from MHD</p> <p>References</p> <p>Chapter 4. Effects of Flux Tube Inhomogeneities and Weak Nonlinearity</p> <p>4.1 Radially Inhomogeneous Flux Tube - Internal Resonances</p> <p>4.1.1 Anomalous resonance in kink oscillations</p> <p>4.1.2 Alfv´en resonance</p> <p>4.2 Boundary Value Problem</p> <p>4.2.1 Phase-mixing in flux tubes</p> <p>4.2.3 Phase-mixed torsional waves</p> <p>4.2.3 Phase-mixed kink oscillations</p> <p>4.3 Longitudinal resonances</p> <p>4.3.1 Loss of radial equilibrium</p> <p>4.3.2 Bullwhip effect</p> <p>4.4 Standing resonances and the temperature jump</p> <p>4.4.1 Growth of the oscillation amplitude - first resonance</p> <p>4.4.2 Spectral density and strong enhancement of the oscillation amplitude</p> <p>4.5 Weakly Nonlinear Waves in Flux Tubes</p> <p>4.5.1 Nonlinear kink oscillations - KdV-B¨urgers equation</p> <p>4.5.2 Possibility of solitary sausage wave</p> <p>4.6 Problems</p> <p>References</p> <p> </p><p>5.1 Kelvin-Helmholtz Instability and Negative Energy Waves</p> <p>5.2 Shear Flow Instabilities in Magnetic Flux Tubes</p> <p>5.2.1 Specifics of Kelvin-Helmholtz instability along flux tubes</p> <p>5.2.2 Flux tubes and Negative Energy Waves (NEWs)</p> <p>5.3 Basic Equations of Flux tube Oscillations with Shear Flows</p> <p>5.4 Dissipative Instabilities of Negative-energy Kink Oscillations</p> <p>5.5 Radiative Instability of Flux Tube Oscillations in Presence of Flows</p> <p>5.5.1 Sausage oscillations</p> <p>5.5.2 Kink oscillations</p> <p>5.6 Parity of Negative and Positive Energy Waves</p> 5.7 Explosive Instability of Negative-energy Waves<p></p> <p>5.8 Sub-critical Mass Flows - Absence of Instabilities</p> <p>5.8.1 Can the Alfv´en waves heat the corona?</p> <p>5.8.2 Effect of mass flows on the efficiency of heating by Alfv´en waves</p> <p>5.9 Phase-Mixed Alfv´en Waves at Sub-alfv´enic Mass Flows</p> <p>5.9.1 Damping rate and height of energy release</p> <p>5.9.2 Observable morphological effects</p> <p>5.10 The Asymptotic Behavior of the Total Energy Flux</p> <p>5.11 The Wave Extinction in the Presence of Downflows</p> <p>5.12 Problems</p> <p>Appendix A. Equation for Alfv´en Waves in the Presence of Parallel Mass Flows</p> <p>References</p> <p>Chapter 6. Collective Phenomena in Rarefied Ensembles of Flux Tubes</p> <p>6.1 Response of Flux Tubes to Propagation of Sound Waves</p> <p>6.1.1 Energy exchange between the waves and ensembles of flux tubes</p> <p>6.1.2 Near-resonance condition</p> <p>6.2 Nonlinear Estimates of the Maximum Energy Input</p> <p>6.3 Axisymmetric Oscilation in Flux Tube Ensembles</p> <p>6.3.1 Equations of motion</p> <p>6.3.2 Dispersion relation - resonance and frequency shift</p> <p>6.4 The Interaction of Unsteady Wave Packets with an Ensemble of Flux Tubes</p> <p>6.5 Spreading of the Energy Absorption Region - ”Clouds of Energy”</p> <p>6.5.1 Large wave packets</p> <p>6.5.2 Short wave packets - energy absorption and release</p> <p>6.6 The Energy Transfer from Unsteady Wave Packets to the Medium</p> <p>6.7 Problems</p> Appendix A.<p></p> <p>References</p> <p>Chapter 7. Effects of Magnetic Flux Tubes in Helioseismology</p> <p>7.1 The Time-distance Tomography</p> 7.1.1 Key Points of Time-distance Analysis with Magnetic Fields<p></p> <p>7.1.2 The Travel Times</p> <p>7.2 The Effects of Horizontal Flows</p> <p>7.3 Effects of Horizontal Magnetic Field</p> <p>7.4 Effects of Background Inhomogeneities</p> <p>7.4.1 Weak Inhomogeneities</p> <p>7.4.2 Variations of Flow Velocities</p> <p>7.5 Practical Use of the Forward-Backward Information</p> <p>7.5.1 Symmetry properties</p> <p>7.5.2 Reconstruction of flow and magnetic fields from observations</p> <p>7.6 Magnetic Corrections in a Vertically Stratified Atmosphere</p> <p>7.7 Estimate of the Energy Flux from Time-distance Analysis</p> <p>7.7.1 Heat and magnetic energy fluxes</p> <p>7.7.2 Contribution of eddy fluxes</p> <p>7.7.3 Reconstruction of energy fluxes from observational data</p> <p>7.8 Raman Spectroscopy of Solar Oscillations</p> <p>7.8.1 Stokes and anti-Stokes satellites</p> <p>7.8.2 Using Raman spectroscopy in observations</p> <p>7.9 Problems</p> References<p></p> <p>Chapter 8. Wave Phenomena in Dense Conglomerate of Flux Tubes</p> <p>8.1 Propagation of MHD Waves in an Ensemble of Closely Packed Flux tubes</p> <p>8.1.1 Basic Equations and Dispersion Relation</p> <p>8.1.2 Spacial Cases</p> <p>8.2 Dissipative processes</p> <p>8.2.1 Weakly Inhomogeneous Medium</p> <p>8.2.2 Medium with Moderate and Strong Inhomogeneities</p> <p>8.2.3 Dissipation by Thermal Conduction</p> <p>8.2.4 Dissipation by Viscosity</p> <p>8.2.5 Total Dissipation Rate</p> <p>8.3 Anomalous Damping at Small Wavevectors</p> <p>8.4 Absorption of p-modes by Sunspots and Active Regions - Observations</p> <p>8.5 The Interpolation Formula and Comparison with Observations</p> <p>8.6 Problems</p> <p>References</p> <p>Chapter 9. NonlinearWave Phenomena in Dense Conglomerate of Flux Tubes</p> <p>9.1 Nonlinear Equations in Strongly Inhomogeneous Medium</p> <p>9.2 Formation of Shocks Across Small Scale Inhomogeneities</p> 9.2.1 Validation of the overturning condition<p></p> <p>9.3 Effect of Inhomogeneities on the Dispersion Properties of the System</p> <p>9.3.1 Basic Equations</p> <p>9.3.2 Dispersion Relation&lt; </p><p>9.3.3 KdV - B¨urgers’ Equation with Strong Inhomogeneities</p> <p>9.4 Numerical Analysis</p> <p>9.4.1 The Model</p> <p>9.4.2 Formation of Shock Waves</p> <p>9.4.3 Energy Dissipation</p> <p>9.5 Problems</p> <p>References</p> <p>Chapter 10. ”Magnetosonic Streaming”</p> 10.1 Secondary Flows - Boundary Layer Effects<p></p> <p>10.1.1 Acoustic Streaming - History and Nature of Faraday’s Effect</p> <p>10.1.2 Secondary Flows In Magnetohydrodynamics</p> <p>10.2 Magnetosonic Streaming due to the Action of Ponderomotive Force</p> <p>10.3 Process of Filamentation and Diffusive Vanishing of Flux Tubes</p> <p>10.3.1 Diffusive broadening of flux tube</p> <p>10.3.2 Quantitative estimates - Lifetimes and spatial scales of flux tubes</p> <p>10.4 Generation of Mass Flows due to the Absorption Mechanisms</p> <p>10.5 Numerical Analysis</p> <p>10.5.1 Basic Equations and Numerical Method</p> <p>10.5.2 Numerical Results</p> 10.6 Intrinsic nature of flux tube fragmentation<p></p> <p>10.7 Problems</p> <p>References</p> <p>Chapter 11. Moving Magnetic Features (MMFs)</p> 11.1 Types of MMFs and Their General Properties<p></p> <p>11.2 Impossibility of the Origin of MMF’s in Conservative Systems</p> <p>11.2.1 The Mechanism</p> <p>11.3 Nonlinear Kink and its Evolution in the Presence of Shear Flows</p> <p>11.4 Soliton and Shocklike Formations along the Flux Tube - Numerical Studies</p> <p>11.5 Observations and Comparison with Theory</p> <p>11.6 Quantitative Analysis</p> <p>11.7 Unification of Known Types of Moving Magnetic Features</p> <p>11.8 Impact of MMFs on the Overlying Atmosphere</p> <p>11.9 Anticorrelation between Population of MMF’s and Coronal Loop Formation</p> <p>11.10 Problems</p> <p>References</p> <p>Chapter 12. Reconnection of Flux Tubes - Specifics of High Plasma ¯</p> <p>12.1 Basics of Magnetic Reconnection</p> <p>12.2 Photospheric Reconnections - No Immediate Gain in Energy&lt; </p><p>12.2.1 Specifics of Photospheric Reconnections</p> <p>12.2.2 Flux Tubes Carrying Different Amount of Magnetic Flux</p> <p>12.2.3 Number of Events - Importance of Noncollinearity of Flux Tubes</p> <p>12.3 Dynamics of the Post-reconnection Products</p> <p>12.3.1 Self-similarity of solution</p> <p>12.3.2 Energy Analysis</p> <p>12.3.3 Transsonic Motion</p> <p>12.4 Dynamics of S-shaped Flux Tubes</p> <p>12.5 Dynamics of-shaped Part of Flux Tube</p> <p>12.6 Problems</p> <p>References</p> <p>Chapter 13. Post-reconnection Processes - Shocks, Jets and Microflares</p> <p>13.1 Key Regularities Observed in the Photosphere/Transition Region</p> <p>13.2 Post-reconnection Shocks and Hydromagnetic Cumulation of Energy</p> <p>13.2.1 Head-on Convergence of Shock-fronts</p> 13.2.2 Energy Distribution between Heat, Jet and Their Combinations<p></p> <p>13.3 Observation of Photospheric Reconnections and Their Impact on Overlying</p> <p>Atmosphere</p> <p>13.3.1 Microflares, jets and their combinations</p> <p>13.3.2 Effects of Converging Supergranular Flows</p> <p>13.4 Key Elements of Energy Production and Observation of Shocks</p> <p>13.5 Explosive Events</p> <p>13.6 Response of the Upper atmosphere to Reconnection of Unipolar Flux Tubes</p> <p>13.7 Problems</p> <p>References</p> <p>Chapter 14. Photospheric Network as Energy Source for Quiet Sun Corona</p> <p>14.1 Post-Reconnection Processes in Arbitrarily Magnetized Environment</p> <p>14.1.1 Magnetic Loop Arcades in The Chromosphere</p> <p>14.1.2 Post-Reconnection Shocks in Chromosphere - Types and Characters</p> <p>14.2 Heights of Shock Formation&lt; </p><p>14.3 Energy Release in the Chromosphere-Transition Region</p> <p>14.3.1 Quantitative Analysis</p> <p>14.3.2 Total Energy Flux In Quiet Sun Atmosphere</p> <p>14.4 Magnetic Energy Avalanche and the Fast Solar Wind</p> <p>14.5 Problems</p> <p>References</p> <p>Chapter 15. Response of the Corona to Magnetic Activity in Underlying</p> <p>Plage Regions</p> <p>15.1 Magnetic Imprint of Plage Regions in the Corona</p> <p>15.2 Coronal Dynamics above Unipolar and Mixed Polarity Plages</p> <p>15.3 Properties of Braidlike Coronal Structures</p> <p>15.4 Comparison of Coronal Emission above Mixed polarity and Unipolar Plages</p> <p>15.5 Energy Extraction Mechanisms from the Ensembles of Photospheric Flux</p> <p>Tubes</p> <p>15.5.1 Mixed Polarity Plage</p> 15.5.2 Unipolar Plage<p></p> <p>15.5.3 N-Solitons</p> <p>15.6 Problems</p> <p>References</p> <p>Chapter 16. Electrodynamic Coupling of Active Region Corona with the Photosphere</p> <p>16.1 The Problem of Multi-face Corona</p> <p>16.2 Emerging Magnetic Flux and Structure Formation in Overlying Atmosphere</p> <p>16.3 Current Drive Mechanisms Associated with the Emerging Magnetic Flux</p> <p>16.3.1 Proper Motion</p> <p>16.3.2 Acoustic Waves</p> <p>16.3.3 Alfv`en Waves</p> <p>16.4 Energy Flow throughout Solar Atmosphere</p> <p>16.4.1 An equivalent circuit - Earlier attempts</p> <p>16.4.2 LRC circuit with mutual inductance (Transition Region)</p> <p>16.5 Energetically Open Circuit</p> <p>16.6 Evolution of Current Systems</p> <p>16.6.1 Linear Regime</p> <p>16.6.2 Nonlinear Regime</p> <p>16.7 Quantitative Analysis</p> <p>16.7.1 Examples</p> <p>16.8 Limiting Currents and Filamentary Structures</p> <p>16.9 Problems</p> <p>Appendix A. Method of slow variables for van der Pol Equation</p> <p>References</p> <p>Chapter 17. Fine Structure of Penumbrae: Formation and Dynamics</p> <p>17.1 Peculiarities of Sunspot Penumbrae - Observations</p> <p>17.2 Dynamics of Penumbral Filaments and On-going Reconnections</p> <p>17.3 Formation of Filamentary Penumbrae</p> <p>17.3.1 Phenomenology of basic mechanism</p> <p>17.3.2 Filamentary structure of sunspot</p> <p>17.3.3 Properties of individual filaments</p> <p>17.4 Screw Pinch Instability and Dark Cores</p> <p>17.4.1 More on substructures of filaments and effects of axial flows</p> <p>17.5 Problems</p> <p>References</p> Chapter 18. Bow Shocks and Plasma Jetting over Penumbrae<p></p> <p>18.1 Response of the Overlying Atmosphere to Penumbral Dynamics</p> <p>18.1.1 Penumbral transients - Double structures and jets</p> <p>18.1.2 Viewing under different angles</p> <p>18.1.3 Brief summary of properties</p> <p>18.2 Phenomenology and Quantitative Analysis</p> <p>18.2.1 Dynamics of S-shaped Filaments</p> <p>18.2.2 Nature of double structures</p> <p>18.3 Bow Shocks</p> <p>18.4 Energy Release and Lifetime of Bright Transients</p> <p>18.5 Problems</p> <p>References</p> <p>Chapter 19. Self-organization in the Corona and Flare Precursors</p> <p>19.1 Well-organized Multi-threaded Coronal Arcades - Slinkies</p> <p>19.2 Essential Difference between ”Regular” and Slinky-Producing Flares</p> <p>19.3 Precursors and Predictability</p> <p>19.4 Exemplary case of X-class Flare and Formation of Slinkies</p> <p>19.5 Phenomenology of Energy Build up and Quantitative Analysis</p> <p>19.6 Recurrent Flares and Echoes</p> <p>19.6.1 Landau damping and Spatio-Temporal Echoes</p> <p>19.6.2 Echo effects in slinkies</p> <p>19.6.3 Spatial and temporal recurrences in flares</p> <p>19.7 Problems</p> <p>References</p> <p>Chapter 20. Quiescent Prominences</p> <p>20.1 Background - Problem of Stability</p> <p>20.2 Large-scale observed regularities</p> <p>20.3 Formation of Prominence Cavity and Helical Structures</p> <p>20.3.1 The case of the 16 August 2007 prominence</p> <p>20.3.2 Phenomenology of cavity formation</p> <p>20.4 Regular Series of Plumes - Multi-mode Regime of Rayleigh-Taylor Instability</p> <p>20.4.1 Practical use</p> <p>20.5 Fast-growing Plumes - Nonlinear Regime</p> <p>20.5.1 Mushroom Formation</p> <p>20.5.2 Two-bubble competition</p> <p>20.6 Greenhouse Effect</p> <p>20.6 Problems</p> <p>References Chapter 21 Mass Flows: From Spicules and Mustaches to Coronal Mass Ejections</p> <p>21.1 Brash-lands of Spicules</p> <p>21.1.1 Appearence and morphology of spicules</p> <p>21.1.2 Physical properties</p> <p>21.1.3 Observations and misconceptions</p> <p>21.1.4 Analytical models</p> <p>21.2 Ellerman Bombs and Severny Moustaches</p> <p>21.2.1 Observations</p> <p>21.2.2 Physical properties and interpretations</p> <p>21.3 Active filaments</p> <p>21.4 Jetting</p> <p>21.4.1 Penumbral jets</p> <p>21.4.2 Transition region and coronal jetting</p> <p>21.4.3 Downflows</p> <p>21.4.4 Polar plumes</p> <p>21.5 Coronal mass ejections</p> <p>21.5.1 Classes</p> <p>21.5.2 Models</p> <p>21.5.3 Controversies</p> <p>21.6 Problems</p> <p>References</p> <p>Chapter 22 The Sun and Laboratory Astrophysics</p> <p>22.1 Magnetic Reconnection Experiments</p> <p>22.1.1 Revealing the fundamental properties of reconnection</p> <p>22.1.2 Verification of the Kruskal-Shafranov stability limit </p><p>22.1.3 Impulsive reconnection</p> <p>22.2 3D-Magnetic reconnection</p> <p>22.2.1 Magnetic Reconnection between Colliding Plasma Plumes</p> <p>22.2.2 Magnetic Reconnection in current carrying flux ropes</p> <p>22.3 Bow shocks and thermal instabilities</p> <p>22.4 Laser experiments on Plasma Instabilities</p> <p>22.4.1 Rayleigh-Taylor Instability</p> 22.4.2 Kelvin-Helmholtz and Explosive Instabilities<p></p> <p>22.4.3 Z-pinches</p> <p>22.5 Tadpoles</p> <p>22.6 Problems</p> References<p></p> <p>Chapter 23. What to Observe</p> <p>23.1 Quiet Sun and Plages</p> <p>23.1.1 Flows along Flux tubes and resulted morphological effect</p> 23.1.2 Bullwhip effect<p></p> <p>23.1.3 Clouds of Energy</p> <p>23.1.4 Formation of Clouds above quiet Sun</p> <p>23.1.5 Space-time cuts revealing the properties of wave packets</p> <p>23.1.6 Chirality of clouds</p> <p>23.1.7 Coronal Holes and comparison with ”out of hole” quite regions</p> <p>23.1.8 Corona above the sequence of alternating unipolar plages. &lt;23.2 Wave Phenomena in and above Sunspots</p> <p>23.2.1 Power spectra of the dominant oscillations in sunspot</p> <p>23.2.2 The f-modes</p> <p>23.2.3 The wave amplitudes in flaring and dormant active regions</p> <p>23.2.4 Shocks at the surface of sunspot</p> <p>23.2.5 Nonlinear waves above active regions</p> <p>23.3 Magnetic Flux Fragmentation</p> <p>23.3.1 Magnetosonic Streaming</p> <p>23.3.2 Lifetime of flux tubes</p> <p>23.4 Moving Magnetic Features</p> <p>23.4.1 Origin, evolution, collapse</p> <p>23.4.2 Effects on Coronal Loop Formation</p> <p>23.5 High-Reconnection and Post-reconnection Processes</p> <p>23.5.1 Dynamics of post-reconnection products</p> <p>23.5.2 Post-reconnection shocks and energy build up throught the atmosphere</p> <p>23.5.3 Triggering jets, microflares and explosive events</p> <p>23.5.4 Magnetic energy avalanche and solar wind</p> <p>23.6 Mystery of Braidlike Structures</p> <p>23.7 Prediction and Expectation of Newly Emerging Sunspots and Pores</p> <p>23.7.1 Observation of emerging fluxes and their coagulation</p> <p>23.7.2 Measuring the mass flows and currents above emerging fluxes</p> <p>23.7.3 Spectroscopic diagnostics of magnetic flux formation</p> <p>23.8 Bow shocks and Precursors of Penumbral Jets</p> 23.9 Flaring, Non-flaring and Slinky Producing Active Regions<p></p> <p>23.9.1 Electric fields and energy fluxes</p> <p>23.9.2 Homologous coronal jets and multiple blobs</p> <p>23.9.3 Echo effects</p> <p>23.10 Prominences</p> <p>23.10.1 Birth and evolution of prominences</p> <p>23.10.2 Onset of various plasma instabilities</p> <p>23.10.3 Exploding prominences</p> <p>23.10.4 Greenhouse-like effects</p> <p>References</p> <p>Index</p>
€ 300,99
Levertijd ongeveer 8 werkdagen

Rubrieken

    Personen

      Trefwoorden

        Physics of Magnetic Flux Tubes