<div>About the Author</div><div>Preface</div><div>Acknowledgment</div><div>CHAPTER ONE: Short Course in Thermal Physics and Statistical Mechanics</div><div>1.1 Introduction</div><div>1.2 Ideal Gas</div><div>1.3 Bose-Einstein Distribution Function</div><div>1.4 Fermi-Dirac Distribution Function</div><div>1.4.1 The Grand Partition Function and Other Thermodynamic Functions</div><div>1.4.2 The Fermi -- Dirac Distribution Function</div><div>1.5 Ideal Fermi Gas</div><div>1.6 Ideal Dense Plasma</div><div>1.6.1 Thermodynamic Relations</div><div>1.6.2 Ideal Gas and Saha Ionization</div><div>1.7 Thomas--Fermi Theory</div><div>1.7.1 Basic Thomas--Fermi Equations</div><div>1.8 References</div><div>CHAPTER TWO: Essential Physics of Inertial Confinement Fusion (ICF)</div><div>2.1 Introduction</div><div>2.2 General Concept of Electromagnetisms and Electrostatics</div><div>2.2.1 The Coulomb's Law</div><div>2.2.2 The Electric Field</div><div>2.2.3 The Gauss's Law</div><div>2.3 Solution of Electrostatic Problems</div><div>2.3.1 Poisson's Equation</div><div>2.3.2 Laplace's Equation</div><div>2.4 Electrostatic Energy</div><div>2.4.1 Potential Energy of a Group of Point Charges</div><div>2.4.2 Electrostatic Energy of a Charge Distribution</div><div>2.4.3 Forces and Torques</div><div>2.5 Maxwell's Equations</div><div>2.6 Debye Length</div><div>2.7 Physics of Plasmas</div><div>2.8 Fluid Description of Plasma</div><div>2.9 Magneto-Hydro Dynamics (MHD)</div><div>2.10 Physics of Dimensional Analysis Application in Inertial Confinement Fusion ICF</div><div>2.10.1 Dimensional Analysis and Scaling Concept</div><div>2.10.2 Similarity and Estimating</div><div>2.10.3 Self-Similarity</div><div>2.10.4 General Results of Similarity</div><div>2.10.5 Principles of Similarity</div><div>2.11 Self-Similarity Solutions of the First and Second Kind</div><div>2.12 Physics of Implosion and Explosion in ICF--Self-Similarity Methods</div><div>2.13 Self-Similarity and Sedov - Taylor Problem</div><div>2.14 Self-Similarity and Guderley Problem</div><div>2.15 References<</div><div>CHAPTER THREE: Physics of Inertial Confinement Fusion (ICF)</div><div>3.1 Introduction</div><div>3.2 Rates of Thermonuclear Reactions</div><div>3.3 Critical Ignition Temperature for Fusion</div><div>3.4 Controlled Thermonuclear Ideal Ignition Temperature</div><div>3.5 Lawson Criterion</div><div>3.5.1 Inertial Confinement and Lawson Criterion</div><div>3.6 Bremsstrahlung Radiation</div><div>3.6.1 Bremsstrahlung Plasma Radiation Losses</div><div>3.6.2 Bremsstrahlung Emission Rate</div><div>3.6.3 Additional Radiation Losses</div><div>3.6.4 Inverse Bremsstrahlung Radiation in Inertial Confinement Fusion</div><div>3.7 Rayleigh-Taylor Instability in Inertial Confinement Fusion</div><div>3.8 Richtmyer-Meshkov Instability in Inertial Confinement Fusion</div><div>3.9 Filamentation Instability in Inertial Confinement Fusion</div><div>3.10 Kelvin-Helmholtz Instability</div><div>3.11 References</div><div>CHAPTER FOUR: Inertial Confinement Fusion (ICF)</div><div>4.1 Introduction</div><div>4.2 Overview of Inertial Confinement Fusion (ICF)</div><div>4.3 Inertial Confinement Fusion (ICF) Process Steps</div><div>4.4 A Path Towards Inertial Fusion Energy</div><div>4.4.1 Direct Drive Fusion</div><div>4.4.2 Indirect Drive Fusion (The Hohlraum)</div><div>4.4.3 Single Beam Driver as Ignitor Concept (Fast Ignition)</div><div>4.5 Inertial Fusion Confinement Implosion and Explosion Process</div><div>4.5.1 Linear Compression Concept</div><div>4.5.2 Cylindrical Compression Concept</div><div>4.5.3 Spherical Compression Concept</div><div>4.6 Basic Consideration for Fusion Target Design</div><div>4.7 Targets for Direct-Drive Laser Inertial Fusion Energy</div><div>4.8 Z-Pinch Target</div><div>4.9 Target Fabrication</div><div>4.10 Conclusion</div><div>4.11 References</div><div>Appendix A: Schrödinger Wave Equation</div><div>A.1 Introduction</div><div>A.2 The Time-Dependent Schrödinger Equation Concept</div><div>A.3 Time-Independent Schrödinger Equation Concept</div><div>A.4 A Free Particle inside a Box and Density of State</div><div>A.5 Heisenberg Uncertainty Principle</div><div>A.6 Pauli Exclusion Principle</div><div>Appendix B: The Stirling Formula</div><div>B.1 Proof of Stirling's Formula</div><div>Appendix C: Table of Fermi--Dirac Functions</div><div>C.1 Fermi-Dirac Functions</div><div>C.2 References</div><div>Appendix D: Tables of Thomas--Fermi Corrected Equation of State</div><div>Appendix E: Lagrangian and Eulerian Coordinate Systems</div><div>E.1 Introduction<div>E.2 Arbitrary Lagrangian Eulerian (ALE) Systems</div><div>E.3 References</div><div>Appendix F: Angular Plasma Frequency and High Power Laser</div><div>F.1 Plasma Frequency Introduction</div><div>F.2 High-Power Laser Fields Introduction</div><div>F.3 References</div><div>Appendix G: A Soliton Wave</div><div>G.1 Introduction</div><div>G.2 References</div><div>INDEX</div>