, , , , e.a.

Foundations of Intelligent Systems

26th International Symposium, ISMIS 2022, Cosenza, Italy, October 3–5, 2022, Proceedings

Specificaties
Paperback, blz. | Engels
Springer International Publishing | e druk, 2022
ISBN13: 9783031165634
Rubricering
Springer International Publishing e druk, 2022 9783031165634
Onderdeel van serie Lecture Notes in Computer Science
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book constitutes the proceedings of the 26th International Symposium on Foundations of Intelligent Systems, ISMIS 2022, held in Cosenza, Italy, in October 2022. 
The 31 regular papers, 11 short papers and 4 industrial papers presented in this volume were carefully reviewed and selected from 71 submissions. They were organized in topical sections as follows: Social Media and Recommendation; Natural Language Processing; Explainability; Intelligent Systems; Classification and Clustering; Complex Data; Medical Applications; Industrial Applications. 

Specificaties

ISBN13:9783031165634
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

​Social Media and Recommendation.-&nbsp;Granular Emotion Detection in Social Media Using Multi-Discipline<div>Ensembles.-&nbsp;Sentiment Polarity and Emotion Detection from Tweets Using Distant Supervision and Deep Learning Models.-&nbsp;Disruptive Event Identification in Online Social Network.- Modeling Polarization on Social Media Posts: A Heuristic Approach Using Media Bias.-&nbsp;Sarcasm detection in Tunisian social media comments: Case of COVID-19.-&nbsp;Multimodal Deep Learning and Fast Retrieval for Recommendation.-&nbsp;Natural Language Processing.-&nbsp;Mining news articles dealing with Food Security.-&nbsp;Identification of Paragraph Regularities in Legal Judgements through&nbsp;Clustering and Textual Embedding.-&nbsp;Aspect term extraction improvement based on a hybrid method.- Exploring the Impact of Gender Bias Mitigation Approaches on a&nbsp;Downstream Classification Task.-&nbsp;A semi-automatic data generator for Query Answering.-&nbsp;Explainability,.-&nbsp;XAI to explore robustness of features in adversarial training for cybersecurity.-&nbsp;Impact of Feedback Type on Explanatory Interactive Learning.-&nbsp;Learning and Explanation of Extreme Multi-Label Deep Classification&nbsp;Models for Media Content.- An Interpretable Machine Learning Approach to Prioritizing Factors Contributing to Clinician Burnout.-&nbsp;A general-purpose method for applying Explainable AI for Anomaly&nbsp;Detection.-&nbsp;More Sanity Checks for Saliency Maps.-&nbsp;Intelligent Systems.-&nbsp;Deep Reinforcement Learning for Automated Stock Trading: Inclusion of Short Selling.-&nbsp;Scaling Posterior Distributions over Differently-Curated Datasets: A&nbsp;Bayesian-Neural-Networks Methodology.- Ensembling Sparse Autoencoders for Network Covert Channel&nbsp;Detection in IoT Ecosystems.- Towards Automation of Pollen Monitoring: Image-Based Tree Pollen&nbsp;Recognition.-&nbsp;Rough Sets for Intelligence on Embedded Systems.-&nbsp;Context as a Distance Function in ConSQL.-&nbsp;Classification and Clustering.-&nbsp;Detecting Anomalies with LatentOut: Novel Scores, Architectures, and&nbsp;Settings.-&nbsp;Richness Fallacy.- Adapting loss functions to learning progress improves accuracy of&nbsp;classification in neural networks.-&nbsp;Multiscale and multivariate time series clustering: A new approach.- Improve Calibration Robustness of Temperature Scaling by Penalizing&nbsp;Output Entropy.-&nbsp;Understanding Negative Calibration from Entropy Perspective.- A New Clustering Preserving Transformation for $k$-Means Algorithm&nbsp;Output.- Complex Data.-&nbsp;A Transformer-Based Framework for Geomagnetic Activity Prediction.-&nbsp;AS-SIM: an approach to Action-State Process Model Discovery.-&nbsp;Combining Active Learning and Fast DNN Ensembles for Process&nbsp;Deviance Discovery.- Temporal Graph-based CNNs (TG-CNNs) for Online Course Dropout Prediction.-&nbsp;Graph Convolutional Networks Using Node Addition and Edge&nbsp;Reweighting.-&nbsp;Audio Super-Resolution via Vision Transformer.- Similarity embedded temporal Transformers: Enhancing stock&nbsp;predictions with historically similar trends.- Investigating noise interference on speech towards applying the&nbsp;Lombard effect automatically.-&nbsp;Medical Applications.-&nbsp;Towards Polynomial Adaptive Local Explanations for Healthcare&nbsp;Classifiers.-&nbsp;Towards Tailored Intervention in Medicine Using Patients’ Segmentation.-&nbsp;Application of association rules to classify IBD patients.- Unsupervised Learning Based Rule Generating System with Temporal&nbsp;Features Extractions Tuned for Tinnitus Retraining Therapy.-&nbsp;Industrial Applications.-&nbsp;TrueDetective 4.0: a Big data architetture for real time anomaly detection.-&nbsp;Optimising the Machine Translation Workflow: Analysis, Development,&nbsp;Benchmarking, Testing and Maintenance.- Classification vs Recommendation methods for Therapeutics&nbsp;Recommendation.- Document Layout Analysis with Variational Autoencoders : an&nbsp;Industrial Application.</div>

Rubrieken

    Personen

      Trefwoorden

        Foundations of Intelligent Systems