, ,

Financial Data Resampling for Machine Learning Based Trading

Application to Cryptocurrency Markets

Specificaties
Paperback, blz. | Engels
Springer International Publishing | e druk, 2021
ISBN13: 9783030683788
Rubricering
Springer International Publishing e druk, 2021 9783030683788
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.

Specificaties

ISBN13:9783030683788
Taal:Engels
Bindwijze:paperback
Uitgever:Springer International Publishing

Inhoudsopgave

<p>Chapter 1 - Introduction&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>Chapter 2 - Related work&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>Chapter 3 - Implementation&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>

<p>Chapter 4 - Results&nbsp;&nbsp; </p>

<p>Chapter 5 - Conclusions and future work&nbsp;</p>

Rubrieken

    Personen

      Trefwoorden

        Financial Data Resampling for Machine Learning Based Trading